# **TUBO E RACCORDI IN PP-R**













Edizione 6: Gennaio 2019







## **INDICE**

| 1. GENERALITA                          | pag. | 4  |
|----------------------------------------|------|----|
| 2. PROPRIETA' DEL SISTEMA COPRAX       | pag. | 6  |
| 3. PROPRIETA' DEL SISTEMA COPRAX FIBRA | pag. | 8  |
| 4. INFORMAZIONI TECNICHE               | pag. | 9  |
| 5. GARANZIA                            | pag. | 20 |
| 6. LAVORAZIONE                         | pag. | 22 |
| 7. RESISTENZA CHIMICA                  | pag. | 31 |
| 8. PERDITE DI CARICO                   | pag. | 37 |
| 9. ISOLAMENTO TERMICO                  | pag. | 43 |
| 10. TECNICA INSTALLATIVA               | pag. | 44 |
| 11. AVVERTENZE                         | pag. | 53 |
| 12. COLLAUDO IMPIANTO                  | pag. | 56 |
| 13. DIMENSIONI RACCORDI                | pag. | 57 |

# 1. GENERALITA'

Il COPRAX, prodotto da Prandelli dal 1987, é un sistema costituito da tubi e raccordi in Polipropilene Copolimero Random (di seguito indicato come PP-R).

Le caratteristiche del sistema lo rendono idoneo alla realizzazione di installazioni idrotermosanitarie nelle forme più diversificate e con una notevole affidabilità nel tempo. E' inoltre consentito il trasporto di fluidi alimentari industriali, compatibilmente con le caratteristiche del fluido convogliato.

La peculiarità del sistema COPRAX consiste nella tecnica di assemblaggio, che avviene mediante saldatura per fusione delle parti che si desiderano collegare. A seguito della saldatura, tubo e raccordo diventano un corpo unico, senza soluzione di continuità, ed escludono problemi che possono derivare da potenziali punti di perdita.

La tecnica di assemblaggio, l'ampia gamma di misure e di raccordi a disposizione, la versatilità del sistema e le ottime caratteristiche chimico-fisiche fanno del COPRAX un prodotto di notevole qualità comprovata ormai da anni di esperienza.







Per la produzione del sistema COPRAX viene impiegato il PP-R, idoneo a produrre tubi conformi alle norme DIN 8078 (Tubi in Polipropilene. Requisiti generali di qualità-prove) e UNI EN ISO 15874 (Sistemi di tubazioni di materia plastica per installazioni di acqua calda e fredda - Polipropilene PP).

Il granulo, prima di essere lavorato, é sottoposto all'interno del laboratorio Prandelli a test specifici che ne verificano l'idoneità all'impiego (norma ISO/R 1133 procedura 18. Indice di fusione MFI 190/5).

Il PP-R é una resina termoplastica che viene trasformata nel prodotto finito attraverso un innalzamento di temperatura, che porta a plastificare il materiale, consentendo la produzione del tubo mediante estrusione e dei raccordi mediante stampaggio.

Questi processi si svolgono all'interno dello stabilimento Prandelli sotto il controllo di personale esperto e qualificato. Le dimensioni dei tubi e dei raccordi, con le relative tolleranze di lavorazione, sono determinate in conformità alla norma UNI EN ISO 15874 (Tubi in polipropilene, PP, dimensioni) e sono prodotti nelle serie S5, S3,2, S2,5.

| PROPRIETA'                                      | METODO DI PROVA        | UNITA' DI MISURA | VALORE DI PROVA        |
|-------------------------------------------------|------------------------|------------------|------------------------|
| Densità                                         | ISO 1183               | Kg/m³            | 905                    |
| Indice di fusione MFR (230°C/2, 16 Kg)          | ISO 1133               | g/10 min         | 0.25                   |
| Modulo di elasticità minimo                     | ISO 178                | MPa              | 480                    |
| Modulo a flessione (2 mm/min)                   | ISO 178                | MPa              | 800                    |
| Modulo a trazione (1 mm/min)                    | ISO 527                | MPa              | 900                    |
| Allungamento a deformazione (50 mm/min)         | ISO 527-2              | %                | 13,5                   |
| Sollecitazione a deformazione (50 mm/min)       | ISO 527-2              | MPa              | 25                     |
| Resistenza all'urto (Charpy) c/intaglio (23°C)  | ISO 179/1eA            | kJ//m²           | 20                     |
| Resistenza all'urto (Charpy) c/intaglio (0°C)   | ISO 179/1eA            | kJ//m²           | 3,5                    |
| Resistenza all'urto (Charpy) c/intaglio (-23°C) | ISO 179/1eA            | kJ//m²           | 2,0                    |
| Resistenza all'urto (Charpy) s/intaglio (23°C)  | ISO 179/1eU            | kJ//m²           | no break               |
| Resistenza all'urto (Charpy) s/intaglio (0°C)   | ISO 179/1eU            | kJ//m²           | no break               |
| Resistenza all'urto (Charpy) s/intaglio (-23°C) | ISO 179/1eU            | kJ//m²           | 40                     |
| Coef. di dilatazione termica lineare (0°C/70°C) | DIN 53752              | K <sup>-1</sup>  | 1,5 x 10 <sup>-4</sup> |
| Conduttività termica                            | DIN 52612              | W/mK             | 0,24                   |
| Calore specifico (20°C)                         | calorimetro adiabatico | kJ/kg K          | 2,0                    |
| Resistività di superficie                       | IEC 60093              | Ohm              | > 1012                 |

#### RESISTENZA ALLA CORROSIONE CHIMICA

Il COPRAX ha una bassissima affinità chimica con svariate sostanze a carattere sia acido che basico. Ciò rende compatibile il contatto del prodotto con i materiali normalmente utilizzati nell'edilizia, quali la calce o il cemento, senza la necessità di ricorre-

re a protezioni specifiche.

In caso di trasporto o contatto con sostanze particolari, vi invitiamo a verificare la resistenza chimica del PP-R, consultando l'apposita tabella riportata a pag. 31.

| Resistività di volume (a 20° C) del <b>COPRAX</b> e de | ei metalli di comune impiego i | nel campo idrotermosanitario |
|--------------------------------------------------------|--------------------------------|------------------------------|
| COPRAX (determinata secondo DIN 53482)                 | > 1 -10 <sup>16</sup>          | Ωcm                          |
| Acciaio                                                | $= 0.1 \div 0.25 - 10^{-4}$    | $\Omega$ cm                  |
| Ferro puro                                             | = 0.0978 - 10 <sup>-4</sup>    | Ωcm                          |
| Rame industriale per condutture                        | = 0.017241 - 10 <sup>-4</sup>  | Ωcm                          |

#### BASSA CONDUTTIVITA' TERMICA

L'elevato grado di isolamento termico che caratterizza il materiale garantisce una bassa cessione di calore da parte del fluido trasportato, che si riflette in una minima riduzione di temperatura fra il punto di produzione e quello di erogazione dell'acqua calda, con conseguente risparmio energetico.

| Conduttività termica (a 60° C) del <b>COPRAX</b> e dei | i metalli di comune impieg | o nel campo idrotermosanitario |
|--------------------------------------------------------|----------------------------|--------------------------------|
| COPRAX (determinata secondo DIN 52612)                 | $\lambda = 0.24$           | W/mK                           |
| Acciaio                                                | $\lambda = 45 \div 60$     | W/mK                           |
| Ferro puro                                             | $\lambda = 45 \div 60$     | W/mK                           |
| Rame industriale per condutture                        | $\lambda = 300 \div 400$   | W/mK                           |

Il basso valore di conduttività termica provoca inoltre una drastica diminuzione dell'effetto di condensa sulla superficie esterna del tubo, circostanza che, in determinate condizioni termoigrometriche, é invece facilmente riscontrabile nel caso di impiego di tubi metallici. Si verifica infine un allungamento dei tempi di trasformazione dell'acqua in ghiaccio, quando la temperatura esterna é particolarmente rigida.





#### **BASSA RUMOROSITA'**

Per effetto dell'alto valore di isolamento acustico del materiale, la rumorosità degli impianti viene notevolmente attenuata, sia nel caso di velocità di scorrimento dell'acqua particolarmente elevate, sia in presenza di colpi d'ariete.

#### **IGIENICITA'**

Il PP-R, materia prima utilizzata per la produzione del sistema COPRAX, é completamente atossico e rispondente alle normative vigenti a livello internazionale.

#### RESISTENZA ALLE CORRENTI VAGANTI

Grazie al suo elevato potere di isolamento elettrico, il COPRAX non risente del fenomeno delle correnti vaganti, che può creare pericolose perforazioni nei tubi in materiale metallico. Questo fenomeno si manifesta prevalentemente quando l'installazione é realizzata in zone ad alta concentrazione industriale, nei pressi delle tratte ferroviarie, e comunque in zone dove esiste una forte concentrazione di correnti elettrostatiche.

#### **BASSA PERDITA DI CARICO**

La superficie interna dei tubi e dei raccordi del sistema COPRAX non presenta porosità, cricche o fessurazioni, in virtù della struttura particolarmente omogenea e compatta del materiale, ottenuta mediante una tecnologia produttiva all'avanguardia. Questa caratteristica, che si traduce in una rugosità superficiale estremamente ridotta, permette di avere perdite di carico molto basse (si vedano i diagrammi alla pag. 44).

Inoltre non sono possibili fenomeni di ostruzione delle condotte causati dal deposito di calcare.

#### FACILE LAVORABILITA'

In virtù del valore della densità, pari a 0.905 g/cm3, i tubi e i raccordi risultano estremamente leggeri. Tale circostanza, unitamente alla completezza del sistema, permette di realizzare installazioni in modo agevole e sicuro, con un notevole risparmio di tempo rispetto ai prodotti tradizionali.

#### **COPRAX FIBRA**

I tubi COPRAX FIBRA sono prodotti mediante coestrusione di due materiali distinti.

La parete del tubo si compone, in entrambi i prodotti, di tre diverse zone:

- uno strato interno, a contatto con il fluido trasportato, costituito da PP-R;
- uno strato intermedio, costituito da PP-R caricato con FIBRA DI VETRO (GF);
- 3) uno strato esterno ancora costituito da PP-R

Il processo produttivo impiegato consente la realizzazione dei tre strati in un'unica fase che porta all'intima fusione dei diversi materiali.

La base comune dei due materiali, ovvero il PP-R, dà origine ad una struttura senza soluzione di continuità fra i diversi strati.

Il principale vantaggio legato alla presenza del PP-R caricato con FIBRA DI VETRO si riflette in una drastica riduzione del coefficiente di dilatazione termica del prodotto finito: questo consente, nel caso di installazioni effettuate fuori traccia, di ridurre gli staffaggi per ancorare il tubo alle strutture murarie. I raccordi da utilizzare per la realizzazione degli im-

pianti sono tutti quelli della gamma COPRAX.

La tecnica di saldatura tubo-raccordo è la medesima impiegata per la gamma COPRAX in quanto il raccordo si salda allo strato esterno del tubo, che è in PP-R.

#### **VANTAGGI**

- Dilatazione lineare ridotta del 60% rispetto all'omologo tubo in PP-R
  - Ottima stabilità e compattezza del la struttura
  - Versatilità nella realizzazione di im pianti fuori traccia

#### **ALCUNI CAMPI DI IMPIEGO**

- Trasporto di acqua potabile calda e/o fredda
  - Colonne montanti fuori traccia
  - Impiantistica industriale
  - Trasporto di aria compressa
  - · Impianti di climatizzazione

La verifica di resistenza di un prodotto si effettua tenendo conto di:

- 1. MATERIALE con cui è fabbricato
- 2. **SOLLECITAZIONI** a cui è sottoposto
- Il sistema COPRAX è realizzato utilizzando un PP-R, le cui caratteristiche comportamentali nei confronti delle sollecitazioni sono riassunte nelle cosiddette "curve di regressione": queste costituiscono la carta d'identità del materiale e ne determinano la risposta alle sollecitazioni che derivano dall'ambiente.
- Le sollecitazioni a cui un sistema termoidraulico è sottoposto sono molteplici; per semplicità consideriamo il caso in cui il fluido trasportato sia acqua e l'ambiente in cui l'impianto lavora non sia gravato da particolari condizioni. In caso contrario, anche queste eventuali condizioni particolari, entrerebbero in gioco a limitare la vita del prodotto.

Fatta questa premessa, possiamo dire che le sollecitazioni che definiscono le condizioni di esercizio dell'impianto, per il trasporto di acqua calda e fredda, sono:

- TEMPERATURA
- TEMPO
- PRESSIONE

A partire dalle curve di regressione del materiale che costituisce la materia prima da cui sono ricavati i tubi e i raccordi della gamma COPRAX, è possibile, una volta fissata la temperatura di lavoro e il tempo di esercizio, ricavare la seguente tabella delle pressioni massime di esercizio continuo. La tabella che riportiamo è stata calcolata considerando un coefficiente di sicurezza pari a C = 1,5 per tutte le condizioni. Questo è il valore previsto per la temperatura di progetto.

#### PRESSIONI DI ESERCIZIO AMMISSIBILI

|                  | TEMPO DI ESERCIZIO | PRESSIONE MASSIMA DI ESERCIZIO |        |          |  |
|------------------|--------------------|--------------------------------|--------|----------|--|
| TEMPERATURA (°C) | (ANNI)             | *SDR 11                        | *SDR 6 | *SDR 7,4 |  |
|                  | 1                  | 15,0                           | 30,1   | 23,5     |  |
|                  | 5                  | 14,1                           | 28,3   | 22,1     |  |
| 20°C             | 10                 | 13,8                           | 27,5   | 21,5     |  |
| 20 C             | 25                 | 13,3                           | 26,6   | 20,8     |  |
|                  | 50                 | 12,9                           | 25,9   | 20,2     |  |
|                  | 1                  | 12,8                           | 25,6   | 20,0     |  |
|                  | 5                  | 12,0                           | 24,0   | 18,8     |  |
| 30°C             | 10                 | 11,7                           | 23,3   | 18,2     |  |
|                  | 25                 | 11,3                           | 22,5   | 17,6     |  |
|                  | 50                 | 10,9                           | 21,9   | 17,1     |  |
|                  | 1                  | 10,9                           | 21,7   | 17,0     |  |
|                  | 5                  | 10,2                           | 20,3   | 15,9     |  |
| 40°C             | 10                 | 9,9                            | 19,7   | 15,4     |  |
| 10 0             | 25                 | 9,5                            | 19,0   | 14,8     |  |
|                  | 50                 | 9,2                            | 18,4   | 14,4     |  |
|                  | 1                  | 9,2                            | 18,4   | 14,4     |  |
|                  | 5                  | 8,6                            | 17,1   | 13,4     |  |
| 50°C             | 10                 | 8,3                            | 16,6   | 13,0     |  |
|                  | 25                 | 8,0                            | 16,0   | 12,5     |  |
|                  | 50                 | 7,8                            | 15,5   | 12,1     |  |
|                  | 1                  | 7,8                            | 15,5   | 12,1     |  |
|                  | 5                  | 7,2                            | 14,4   | 11,3     |  |
| 60°C             | 10                 | 7,0                            | 14,0   | 10,9     |  |
|                  | 25                 | 6,7                            | 13,4   | 10,5     |  |
|                  | 50                 | 6,5                            | 13,0   | 10,1     |  |
|                  | 1                  |                                | 14,2   | 11,1     |  |
|                  | 5                  |                                | 13,2   | 10,3     |  |
| 65°C             | 10                 |                                | 12,8   | 10,0     |  |
|                  | 25                 |                                | 12,3   | 9,6      |  |
|                  | 50                 |                                | 11,9   | 9,3      |  |
|                  | 1                  |                                | 13,0   | 10,2     |  |
|                  | 5                  |                                | 12,1   | 9,4      |  |
| 70°C             | 10                 |                                | 11,7   | 9,1      |  |
|                  | 25                 |                                | 10,1   | 7,9      |  |
|                  | 50                 |                                | 8,6    | 6,7      |  |





|                  | TEMPO DI ESERCIZIO |         | PRESSIONE MASSIMA DI ESEI | RCIZIO   |
|------------------|--------------------|---------|---------------------------|----------|
| TEMPERATURA (°C) | (ANNI)             | *SDR 11 | *SDR 6                    | *SDR 7,4 |
|                  | 1                  |         | 12,0                      | 9,3      |
|                  | 5                  |         | 11,1                      | 8,6      |
| 75°C             | 10                 |         | 10,1                      | 7,9      |
|                  | 25                 |         | 8,1                       | 6,3      |
|                  | 50                 |         | 6,9                       | 5,4      |
|                  | 1                  |         | 10,9                      | 8,5      |
|                  | 5                  |         | 9,7                       | 7,6      |
| 80°C             | 10                 |         | 8,2                       | 6,4      |
|                  | 25                 |         | 6,5                       | 5,1      |
|                  | 50                 |         | 5,5                       | 4,3      |
|                  | 1                  |         | 10,0                      | 7,8      |
|                  | 5                  |         | 7,8                       | 6,1      |
| 85°C             | 10                 |         | 6,6                       | 5,2      |
|                  | 25                 |         | 5,3                       | 4,1      |
|                  | 50                 |         | 4,5                       | 3,5      |
|                  | 1                  |         | 9,1                       | 7,1      |
|                  | 5                  |         | 6,4                       | 5,0      |
| 90°C             | 10                 |         | 5,4                       | 4,2      |
|                  | 25                 |         | 4,3                       | 3,4      |
|                  | 50                 |         | 3,6                       | 2,8      |

\*Si veda più avanti per la definizione di SDR.

La tabella sopra riportata è da intendersi indicativa, in quanto normalmente le condizioni di esercizio a cui un impianto viene sottoposto non sono sempre uguali a se stesse, ma possono variare nel tempo, sia in termini di pressione che di temperatura.

Questo approccio vicino alla realtà è tenuto in considerazione nella NORMA UNI EN ISO 15874, che si riferisce proprio ai "Sistemi di tubazioni di materia plastica per installazioni di acqua calda e fredda - Polipropilene (PP)" nelle sue varie parti.

Il sistema COPRAX risponde ai requisiti della norma UNI EN ISO 15874: tale norma, nella parte 1, suddivide in quattro Classi di applicazione le condizioni di esercizio a cui il sistema può essere sottoposto;

ogni classe è associata ad un campo di applicazione differente. La tabella 1 riporta quanto ora detto.

**TABELLA 1** 

| Classe di<br>applicazione | Temperatura<br>di progetto<br>TD °C | Tempo a<br>Tp anni | T <sub>max</sub><br>°C | Tempo a T <sub>max</sub><br>anni | T <sub>mal</sub> °C | Tempo a t <sub>mal</sub><br>h | Campo tipico di<br>applicazione              |
|---------------------------|-------------------------------------|--------------------|------------------------|----------------------------------|---------------------|-------------------------------|----------------------------------------------|
| 1 1)                      | 60                                  | 49                 | 80                     | 1                                | 95                  | 100                           | Fornitura di acqua calda (60°C)              |
| 2 1)                      | 70                                  | 49                 | 80                     | 1                                | 95                  | 100                           | Fornitura di acqua calda (70°C)              |
| 4                         | 20                                  | 2,5                |                        |                                  |                     |                               |                                              |
|                           | 40                                  | 20                 | 70                     | 2,5                              | 100                 | 100                           | Riscaldamento sotto il                       |
|                           | 60                                  | 25                 | 70                     | 2,3                              | 100                 | 100                           | pavimento e radiatori a<br>bassa temperatura |
| 5                         | 20                                  | 14                 |                        |                                  |                     |                               |                                              |
|                           | 60                                  | 25                 | 90                     | 1                                | 100                 | 100                           | Padiatori ad alta tompo                      |
|                           | 80                                  | 10                 | 70                     | l                                | 100                 | 100                           | Radiatori ad alta tempe-<br>ratura           |

#### **INTERPRETAZIONE TABELLA 1:**

Nella normativa si assume che per ogni classe di applicazione il progetto di vita operativa dell'impianto sia di 50 anni. In questi anni l'impianto dovrebbe funzionare, di norma, ad una o più temperature di progetto TD, ma si assume che possano presentarsi anche situazioni in cui si arrivi ad una temperatura massima Tmax e/o ad una tempersatura di malfunzionamento Tmal. Nella tabella viene quindi stabilita, per ogni classe, la ripartizione dei tempi ai vari livelli di temperatura, considerando cumulativamente sempre i 50 anni.

#### Ad esempio:

per la Classe 4, la normativa prevede che l'impianto, durante i 50 anni di vita, possa lavorare a tutte le seguenti condizioni:

- 2,5 anni a 20°C
- 20 anni a 40°C
- 25 anni a 60°C
- 2,5 anni a  $70^{\circ}$ C (Tmax)
- 100 ore a 100°C (Tmal).





La pressione di progetto PD, non presente nella tabella qui sopra, deve essere nota al progettista ed avrà importanza nella scelta della dimensione corretta del tubo (serie), infunzione dell'applicazione finale. In linea generale comunque, tutti i sistemi che soddisfano le condizioni riportate nella tabella,

devono soddisfare anche i seguenti requisiti:

TEMPERATURA = 20°C

TEMPO = 50 ANNI

PRESSIONE = 10 BAR

#### SCELTA DELLE DIMENSIONI DEL TUBO

In base al diametro ed allo spessore del tubo è possibile definire i seguenti parametri:

- SDR (Standard Dimension Ratio)
- SERIE S
- SDR: è' un numero adimensionale che si ottiene dal rapporto fra il diametro nominale esterno del tubo (dn) e lo spessore nominale di parete (en):

$$SDR = dn/en$$

 SERIE S: questo è un parametro definito dalla NORMA UNI EN ISO 15874-1, che fissa la serie S calcolandola (da cui il parametro Scalc) in funzione del diametro esterno nominale (dn) e dello spessore nominale di parete (en), secondo la formula:

$$Scalc = (dn - en)/2en$$

Facciamo notare che, secondo la suddetta formula, a parità di diametro, se lo spessore aumenta, la serie S diminuisce. In altre parole fra due tubi dello stesso diametro, avrà una sezione resistente superiore quello con una serie più bassa. La conoscenza della serie S diventa indispensabile per decidere se il tubo in oggetto soddisfa i requisiti richiesti dalle condizioni di esercizio dell'impianto che si vuole realizzare.

Per prendere questa decisione si deve considerare la tabella 2 definita dalla NORMA UNI EN ISO 15874-2.

#### **TABELLA 2**

| PD   | Classe 1 TD=60° | Classe 2 TD=70° | Classe 4 TD=60° | Classe 5 TD=80° |  |
|------|-----------------|-----------------|-----------------|-----------------|--|
| bar  | Scalc,max       |                 |                 |                 |  |
| 4,0  | 6,9             | 5,3             | 6,9             | 4,8             |  |
| 6,0  | 5,2             | 3,6             | 5,5             | 3,2             |  |
| 8,0  | 3,9             | 2,7             | 4,1             | 2,4             |  |
| 10,0 | 3,1             | 2,1             | 3,3             | 1,9             |  |

13

Una volta nota la classe di applicazione, e quindi la relativa temperatura di progetto TD, conoscendo la pressione di progetto PD, si può trovare nella Tabella 2 di pagina precedente, la serie calcolata massima (Scalc,max) che soddisfi le condizioni richieste. La condizione da verificare è che sia:

Scalc < = Scalc,max

**ESEMPIO**: realizzazione di un impianto con le seguenti caratteristiche:

- 1. Fornitura di acqua calda sanitaria con TD =  $70^{\circ}C$
- 2. Pressione di progetto PD = 8 bar

Per soddisfare la richiesta 1) dobbiamo cercare la classe di applicazione nella "Tabella 1", dalla quale si ricava che è la Classe 2.

Per soddisfare poi la richiesta 2) dobbiamo cercare la Serie corrispondente nella "Tabella 2" dalla quale si ricava che quella che soddisfa le richieste deve essere uguale o inferiore al valore 2,7. Nella gamma COPRAX questo è soddisfatto dalla Serie 2,5.

In virtù di quanto sopra esposto, la gamma COPRAX è classificabile come segue nel prospetto delle classi:

**SERIE S2.5** = SDR 6 = Classe1/10bar

Classe 2/8bar Classe 4/10bar Classe 5/6bar

**SERIE S3,2** = SDR 7,4 = Classe 1/8bar

Classe 2/6bar Classe 4/10bar Classe 5/6bar

SERIE S5 = SDR 11 = Classe 1/6bar

Classe 2/4bar Classe 4/6bar

Il sistema **COPRAX** si compone di una vasta gamma di raccordi, che si possono suddividere in due gruppi, a seconda dell'impiego:

- Raccordo in PP-R a saldare;
- Raccordo di transizione in PP-R con inserto metallico.

Nel primo caso, la giunzione tubo-raccordo (in alcuni casi raccordo-raccordo) si effettua mediante operazione di fusione tra le parti, mentre nel secondo caso una delle estremità del raccordo é

dotata di un inserto metallico filettato annegato nel corpo in PP-R. Queste figure vengono impiegate nelle parti terminali dell'impianto, offrendo la possibilità di potersi collegare ad installazioni già in opera, o comunque a elementi metallici filettati.

NOTA: tutti i raccordi COPRAX garantiscono una pressione di esercizio massima, alla temperatura di 20°C, di 20 BAR.



#### **TUBO COPRAX SDR 11 (PN 10 - S 5)**

In accordo: DIN 8077-78 - UNI EN ISO 15874

Certificati: CERTIF, CSTB

Campi di applicazione: acqua fredda e refrigerata,

acqua calda secondo la tabella CLASSI DI ESERCIZIO, acqua piovana, irrigazione.

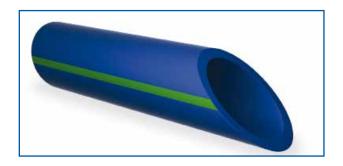


#### **CARATTERISTICHE DIMENSIONALI**

| Diametro<br>nominale (Dn)<br>mm | Diametro<br>esterno<br>minimo<br>(Demin) mm | Diametro<br>interno<br>(Di) mm | Spessore<br>minimo<br>(Emin) mm | Peso<br>g/m | Contenuto<br>acqua<br>l/m |
|---------------------------------|---------------------------------------------|--------------------------------|---------------------------------|-------------|---------------------------|
| 32                              | 32                                          | 26.2                           | 2.9                             | 253         | 0.539                     |
| 40                              | 40                                          | 32.6                           | 3.7                             | 463         | 0.834                     |
| 50                              | 50                                          | 40.8                           | 4.6                             | 618         | 1.307                     |
| 63                              | 63                                          | 51.4                           | 5.8                             | 999         | 2.074                     |
| 75                              | 75                                          | 61.4                           | 6.8                             | 1381        | 2.959                     |
| 90                              | 90                                          | 73.6                           | 8.2                             | 2061        | 4.252                     |
| 110                             | 110                                         | 90.0                           | 10.0                            | 2946        | 6.359                     |

| PD   | Classe 1              | Classe 2              | Classe 4          | Classe 5  |
|------|-----------------------|-----------------------|-------------------|-----------|
| bar  | (TD=60°C)             | (TD=70°C)             | (TD=MIX)          | (TD=MIX)  |
|      | acqua calda sanitaria | acqua calda sanitaria | pannelli radianti | radiatori |
|      |                       | Scalc                 | ,max              |           |
| 4,0  | 6,9                   | 5,3                   | 6,9               |           |
| 6,0  | 5,0                   |                       | 5,5               |           |
| 8,0  |                       |                       |                   |           |
| 10,0 |                       |                       |                   |           |




### **TUBO COPRAX SDR 7,4 (PN 16 - S 3,2)**

In accordo: DIN 8077-78 - UNI EN ISO 15874

Certificati: IIP, CERTIF

Campi di applicazione: acqua fredda, acqua calda,

riscaldamento



#### **CARATTERISTICHE DIMENSIONALI**

| Diametro<br>nominale (Dn)<br>mm | Diametro esterno minimo (Demin) mm | Diametro<br>interno<br>(Di) mm | Spessore<br>minimo<br>(Emin) mm | Peso<br>g/m | Contenuto<br>acqua<br>l/m |
|---------------------------------|------------------------------------|--------------------------------|---------------------------------|-------------|---------------------------|
| 50                              | 50                                 | 36.2                           | 6.9                             | 840         | 1.029                     |
| 63                              | 63                                 | 45.8                           | 8.6                             | 1323        | 1.647                     |
| 75                              | 75                                 | 54.4                           | 10.3                            | 1884        | 2.323                     |
| 90                              | 90                                 | 65.4                           | 12.3                            | 2702        | 3.358                     |
| 110                             | 110                                | 79.8                           | 15.1                            | 4051        | 4.999                     |
| 125                             | 125                                | 90.8                           | 17.1                            | 5267        | 6.472                     |

| PD   | Classe 1              | Classe 2              | Classe 4          | Classe 5  |
|------|-----------------------|-----------------------|-------------------|-----------|
| bar  | (TD=60°C)             | (TD=70°C)             | (TD=MIX)          | (TD=MIX)  |
|      | acqua calda sanitaria | acqua calda sanitaria | pannelli radianti | radiatori |
|      |                       | Scalo                 | ,max              |           |
| 4.0  | 6.9                   | 5.3                   | 6.9               | 4.7       |
| 6.0  | 5.0                   | 3.5                   | 5.5               | 3.2       |
| 8.0  | 3.8                   |                       | 4.1               |           |
| 10.0 |                       |                       | 3.3               |           |



#### **TUBO COPRAX SDR 6 (PN 20 - S 2,5)**

In accordo: DIN 8077-78 - UNI EN ISO 15874

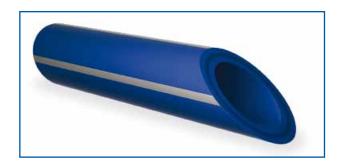
Certificati: IIP, SKZ, CERTIF, CSTB, DVGW, RINA,

SABS

Campi di applicazione: acqua fredda, acqua calda,

riscaldamento




#### **CARATTERISTICHE DIMENSIONALI**

| Diametro<br>nominale (Dn)<br>mm | Diametro esterno minimo (Demin) mm | Diametro<br>interno<br>(Di) mm | Spessore<br>minimo<br>(Emin) mm | Peso<br>g/m | Contenuto<br>acqua<br>l/m |
|---------------------------------|------------------------------------|--------------------------------|---------------------------------|-------------|---------------------------|
| 20                              | 20                                 | 13.2                           | 3.4                             | 176         | 0.137                     |
| 25                              | 25                                 | 16.6                           | 4.2                             | 270         | 0.216                     |
| 32                              | 32                                 | 21.2                           | 5.4                             | 444         | 0.353                     |
| 40                              | 40                                 | 26.6                           | 6.7                             | 686         | 0.555                     |
| 50                              | 50                                 | 33.4                           | 8.3                             | 1037        | 0.865                     |
| 63                              | 63                                 | 42.0                           | 10.5                            | 1689        | 1.385                     |
| 75                              | 75                                 | 50.0                           | 12.5                            | 2250        | 1.963                     |
| 90                              | 90                                 | 60.0                           | 15.0                            | 3350        | 2.826                     |
| 110                             | 110                                | 73.4                           | 18.3                            | 4900        | 4.298                     |

| PD   | Classe 1               | Classe 2              | Classe 4          | Classe 5  |  |
|------|------------------------|-----------------------|-------------------|-----------|--|
| bar  | (TD=60°C)              | (TD=70°C)             | (TD=MIX)          | (TD=MIX)  |  |
|      | acqua calda sanitaria  | acqua calda sanitaria | pannelli radianti | radiatori |  |
|      | S <sub>calc</sub> ,max |                       |                   |           |  |
| 4.0  | 6.9                    | 5.3                   | 6.9               | 4.7       |  |
| 6.0  | 5.0                    | 3.5                   | 5.5               | 3.2       |  |
| 8.0  | 3.8                    | 2.6                   | 4.1               |           |  |
| 10.0 | 3.0                    |                       | 3.3               |           |  |

## **TUBO COPRAX FIBRA SDR 7,4 (PN 16)**

**Campi di applicazione:** acqua fredda, acqua calda, riscaldamento e condizionamento



#### **CARATTERISTICHE DIMENSIONALI**

| Diametro<br>nominale (Dn)<br>mm | Diametro<br>esterno<br>minimo<br>(Demin) mm | Diametro<br>interno<br>(Di) mm | Spessore<br>minimo<br>(Emin) mm | Peso<br>g/m | Contenuto<br>acqua<br>l/m |
|---------------------------------|---------------------------------------------|--------------------------------|---------------------------------|-------------|---------------------------|
| 20                              | 20                                          | 14.4                           | 2.8                             | 146.2       | 0.163                     |
| 25                              | 25                                          | 18.0                           | 3.5                             | 228.3       | 0.254                     |
| 32                              | 32                                          | 23.2                           | 4.4                             | 368.6       | 0.423                     |
| 40                              | 40                                          | 29.0                           | 5.5                             | 575.2       | 0.660                     |
| 50                              | 50                                          | 36.2                           | 6.9                             | 901.4       | 1.029                     |
| 63                              | 63                                          | 45.8                           | 8.6                             | 1417.8      | 1.647                     |
| 75                              | 75                                          | 54.4                           | 10.3                            | 2020.4      | 2.323                     |
| 90                              | 90                                          | 65.4                           | 12.3                            | 2897.6      | 3.358                     |
| 110                             | 110                                         | 79.8                           | 15.1                            | 4343.6      | 4.999                     |
| 125                             | 125                                         | 90.8                           | 17.1                            | 5204.5      | 6.472                     |

| PD   | Classe 1               | Classe 2              | Classe 4          | Classe 5  |  |
|------|------------------------|-----------------------|-------------------|-----------|--|
| bar  | (TD=60°C)              | (TD=70°C)             | (TD=MIX)          | (TD=MIX)  |  |
|      | acqua calda sanitaria  | acqua calda sanitaria | pannelli radianti | radiatori |  |
|      | S <sub>calc</sub> ,max |                       |                   |           |  |
| 4.0  | 6.9                    | 5.3                   | 6.9               | 4.7       |  |
| 6.0  | 5.0                    | 3.5                   | 5.5               | 3.2       |  |
| 8.0  | 3.8                    |                       | 4.1               |           |  |
| 10.0 |                        |                       | 3.3               |           |  |



#### **TUBO COPRAX FIBRA SDR 11 (PN 10)**

**Campi di applicazione:** acqua fredda, acqua calda e appositamente progettato per condizionamento



#### CARATTERISTICHE DIMENSIONALI

| Diametro<br>nominale (Dn)<br>mm | Diametro<br>esterno<br>minimo<br>(Demin) mm | Diametro<br>interno<br>(Di) mm | Spessore<br>minimo<br>(Emin) mm | Peso<br>g/m | Contenuto<br>acqua<br>l/m |
|---------------------------------|---------------------------------------------|--------------------------------|---------------------------------|-------------|---------------------------|
| 40                              | 40                                          | 32.6                           | 3.7                             | 407.2       | 0.834                     |
| 50                              | 50                                          | 40.8                           | 4.6                             | 633.3       | 1.307                     |
| 63                              | 63                                          | 51.4                           | 5.8                             | 1005.4      | 2.074                     |
| 75                              | 75                                          | 61.4                           | 6.8                             | 1405.6      | 2.959                     |
| 90                              | 90                                          | 73.6                           | 8.2                             | 2033.4      | 4.252                     |
| 110                             | 110                                         | 90.0                           | 10                              | 3031.2      | 6.359                     |
| 125                             | 125                                         | 102.2                          | 11.4                            | 3925.6      | 8.203                     |

| PD   | Classe 1              | Classe 2              | Classe 4          | Classe 5  |  |
|------|-----------------------|-----------------------|-------------------|-----------|--|
| bar  | (TD=60°C)             | (TD=70°C)             | (TD=MIX)          | (TD=MIX)  |  |
|      | acqua calda sanitaria | acqua calda sanitaria | pannelli radianti | radiatori |  |
|      | Scalc, max            |                       |                   |           |  |
| 4.0  | 6.9                   | 5.3                   | 6.9               |           |  |
| 6.0  | 5.0                   |                       | 5.5               |           |  |
| 8.0  |                       |                       |                   |           |  |
| 10.0 |                       |                       | _                 |           |  |

# 5. GARANZIA

Per il sistema COPRAX impiegato per impianti idrotermosanitari, compatibilmente con le caratteristiche tecniche del prodotto ed in ottemperanza alle istruzioni installative riportate nella relativa pubblicazione, rilasciamo la seguente garanzia:

- 1. La ditta Prandelli, produttrice del sistema COPRAX, provvederà a risarcire, tramite la copertura assicurativa stipulata con primaria Compagnia di assicurazione, i danni arrecati a persone o cose, provocati dalla rottura del tubo e/o raccordi riconducibili a evidenti difetti di fabbricazione, sino alla concorrenza massima di Euro 500.000,00, per un periodo di 10 ANNI dalla data di produzione impressa sul tubo.
- **2.** Le condizioni che regolano tale garanzia sono le seguenti:
- il tubo ed i raccordi devono essere installati rispettando le istruzioni installative da noi fornite, previo controllo di possibili avarie o manomissioni, avvenute nel periodo successivo alla produzione e dovute a cause accidentali.
- le condizioni di esercizio (pressione e temperatura) debbono rientrare nei limiti tecnici contemplati nell'ultima pubblicazione della guida tecnica COPRAX.

- il manufatto deve riportare il marchio di identificazione COPRAX.
- **3.** La garanzia non ha validità nei seguenti casi:
- mancata osservanza delle istruzioni installative da noi raccomandate.
- collegamento del tubo e dei raccordi a fonti di calore con limiti di temperatura e della pressione, anche se accidentali, non compatibili con le caratteristiche del tubo e dei raccordi.
- utilizzo di materiale manifestamente non idoneo (tubo e raccordi invecchiati o scalfitti ecc.)
- utilizzo di uno o più componenti, di provenienza diversa da quella di nostra fabbricazione, nella realizzazione dell'impianto.
- nel caso di saldature eseguite in modo non idoneo, in conseguenza all'utilizzo di attrezzature non sufficientemente valide per l'uso a cui sono destinate.





- 4. Richiesta di intervento in garanzia: nell'eventualità in cui avvenga una rottura del COPRAX imputabile solo ed esclusivamente ad evidenti difetti di fabbricazione, é necessario inviarci una lettera raccomandata, con copia al rappresentante di zona, contenente:
- luogo e data di installazione;
- dati e marchio di identificazione del tubo e dei raccordi;
- informazioni sulle condizioni di esercizio (pressione e temperatura);
- campione del tubo o delraccordo sul quale la rottura si é verificata;
- il nome ed indirizzo dell'installatore che ha effettuato l'impianto.

Dopo ricevimento di tale raccomandata, entro un termine ragionevole, provvederemo ad inviare un nostro incaricato onde verificare le cause della rottura.

Nel caso che la rottura rientri nelle condizioni di garanzia, passeremo la pratica alla Compagnia di assicurazione, la quale provvederà al risarcimento dei danni, dopo averne accertato le cause e l'entità.

Qualora la rottura non rientri nelle condizioni della garanzia, procederemo all'addebito delle spese da noi sostenute per il nostro intervento.

Prandelli S.p.A.

# 6. LAVORAZIONE

Per la realizzazione di installazioni mediante i componenti del sistema COPRAX, é necessaria la seguente attrezzatura specifica:













# SALDATURA MEDIANTE POLIFUSORE (COPRAX)

E' necessario compiere le operazioni di riscaldamento e di saldatura in modo tale che la spinta esercitata sugli elementi sia lineare e graduale. Sono infatti da evitare le rotazioni. É possibile correggere la posizione tra tubo e raccordo solo nei primi istanti successivi alla loro saldatura, e comunque senza movimenti eccessivi.

La saldatura deve raffreddarsi gradualmente, senza sbalzi termici elevati, che potrebbero creare notevoli tensioni interne.

#### Sequenza delle operazioni:

#### Preparazione del polifusore

- attrezzare il polifusore con le matrici corrispondenti ai diametri in lavorazione
- inserire la spina nella presa di alimentazione a 220 V
- attendere lo spegnimento della spia verde posta sulla macchina.

NOTA: il polifusore ha raggiunto la temperatura di lavoro quando la spia verde è spenta.

#### Preparazione degli elementi da saldare

- tagliare il tubo con l'apposita cesoia
- pulire l'area di giunzione con uno straccio pulito



#### Effettuazione della saldatura

- verificare che il polifusore sia pronto
- inserire contemporaneamente il tubo ed il raccordo nelle matrici della corrispondente misura, rispettando le condizioni di lavoro riportate nella tabella di pag.24
- estrarre, a riscaldamento avvenuto, gli elementi dalle matrici ed effettuare la giunzione.





#### TEMPI DI SALDATURA CON POLIFUSORE

| Diametro<br>D mm | Tempo di<br>riscaldamento<br>s | Tempo di<br>lavoro<br>s | Tempo di<br>raffreddamento<br>min |
|------------------|--------------------------------|-------------------------|-----------------------------------|
| 20               | 5                              | 4                       | 2                                 |
| 25               | 7                              | 4                       | 3                                 |
| 32               | 8                              | 6                       | 4                                 |
| 40               | 12                             | 6                       | 4                                 |
| 50               | 18                             | 6                       | 4                                 |
| 63               | 25                             | 8                       | 6                                 |
| 75               | 30                             | 8                       | 8                                 |
| 90               | 40                             | 8                       | 8                                 |
| 110              | 50                             | 10                      | 8                                 |
| 125              | 60                             | 10                      | 8                                 |

N.B.: Il tempo di riscaldamento va calcolato dal momento in cui il tubo ed il raccordo sono giunti in battuta sulle matrici.

# AVVERTENZE SULLA REALIZZAZIONE MEDIANTE POLIFUSORE

É opportuno evitare di superare, durante la fase di inserimento del tubo nel raccordo, il gradino di battuta situato all'interno del raccordo, per non provocare un eccessivo restringimento della sezione di passaggio. É fondamentale allineare il tubo al raccordo, affinché le superfici degli elementi da saldare siano completamente a contatto fra loro. Un allineamento precario può infatti compromettere la buona riuscita della giunzione.







# SALDATURA MEDIANTE SALDATRICE DA BANCO PRISMA

#### PRISMA 125LIGHT (d. 63-125 mm)

Alimentazione 230 Volt - 50/60 Hz - Monofase

Potenza max. assorbita: 1400 W

Temperatura di esercizio: 260°C (± 10°C) alla bussola

Regolazione elettrica interna

Dimensioni macchina: 405x175x50 mm

Peso: kg 27



#### PRISMA 125 (d.25-125 mm)

Alimentazione 230 Volt - 50 Hz - Monofase

Potenza max. assorbita: 1400 W Temperatura di lavoro circa 260° C

Regolazione elettrica interna Dimensioni: cm 80x146x135

Peso: kg 152

PER TUTTE LE SPECIFICHE TECNICHE DELLA MACCHINA, RIMANDIAMO AL MANUALE DI ISTRUZIONI PRESENTE NELL'IMBALLO.



## SALDATURA MEDIANTE SALDATRICE PER MANICOTTI ELETTRICI

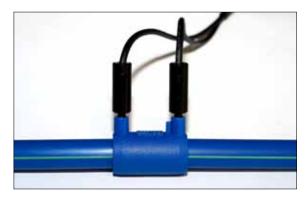
Il manicotto elettrico é particolarmente indicato per effettuare interventi di riparazione o saldature in opera.

#### Sequenza delle operazioni:

#### Preparazione degli elementi da saldare

- · Tagliare il tubo con l'apposita cesoia
- Pulire l'area di giunzione con uno straccio pulito.
- Segnare la zona di saldatura equivalente alla metà della lunghezza del manicotto.




 Raschiare l'intera circonferenza del tubo nella zona interessata alla saldatura per eliminare gli effetti negativi dovuti all'ossidazione e alle tracce di sporco/unto sulla superficie.



 Inserire i tubi nel manicotto facendo in modo che le teste risultino allineate.

#### Preparazione della saldatrice

- Predisporre la saldatrice COPRAX assicurandosi che sia collegata ad una rete di alimentazione di 220 V 50 Hz, e che il cavo di alimentazione sia completamente steso.
- Collegare i morsetti ai terminali del manicotto, assicurandosi che il peso dei cavi non gravi sulla giunzione.



- Avviare la saldatura seguendo le istruzioni riportate sulla saldatrice.
- Accertarsi che durante la saldatura e il successivo raffreddamento (minimo 10 minuti) non siano presenti sollecitazioni sui tubi.
- Attendere almeno 1 ora prima di mettere in pressione l'impianto.







#### TEMPI DI SALDATURA CON SALDATRICE A MANICOTTI ELETTRICI

| Diametro<br>D mm | Tensione<br>V | Tempo di<br>saldatura<br>s | Tempo di<br>raffred. min<br>(sollecitaz. esterne) | Tempo di<br>raffred. min<br>(pressione impianto) |
|------------------|---------------|----------------------------|---------------------------------------------------|--------------------------------------------------|
| 20               | 10.90         | 48                         | 20                                                | 120                                              |
| 25               | 12.60         | 55                         | 20                                                | 120                                              |
| 32               | 19.40         | 55                         | 20                                                | 120                                              |
| 40               | 24.00         | 92                         | 20                                                | 120                                              |
| 50               | 24.00         | 116                        | 20                                                | 120                                              |
| 63               | 24.00         | 127                        | 20                                                | 120                                              |
| 75               | 24.00         | 145                        | 20                                                | 120                                              |
| 90               | 24.00         | 175                        | 20                                                | 120                                              |
| 110              | 24.00         | 260                        | 20                                                | 120                                              |
| 125              | 40.00         | 160                        | 20                                                | 120                                              |

#### AVVERTENZE SULLA REALIZZAZIONE DI SALDATURE MEDIANTE MANICOTTI ELETTRICI

La pulizia e l'assenza di umidità negli elementi da saldare sono condizioni indispensabili per ottenere un buon risultato finale, perciò raccomandiamo di porre particolare attenzione a questa fase preliminare.

Per le stesse ragioni, dopo la fase di raschiatura, evitare di toccare la zona di saldatura. Eventuali tracce di sporco/unto dovute a cause accidentali vanno eliminate utilizzando un detergente specifico per polipropilene/polietilene (per esempio Tangit KS della

Henkel). É vietato l'uso di solventi a base untuosa, in quanto lasciano sulla superficie dei tubi una pellicola che impedisce la saldatura. Per ottenere la massima resa della saldatura bisogna inserire i tubi in egual misura e perfettamente allineati con il manicotto.

É bene accertarsi che il diametro di lavoro impostato sulla macchina coincida con quello reale degli elementi da collegare.

Se, per qualche motivo, si rendesse necessario eseguire più cicli di saldatura sullo stesso manicotto, é indispensabile attendere il completo raffreddamento della saldatura fra un ciclo e il successivo.

# 6. LAVORAZIONE

# SALDATURA MEDIANTE RACCORDO A SELLA (K47)

L'impiego del raccordo a sella K47 costituisce un prezioso alleato per l'installatore, in quanto consente di ottenere in modo pratico ed affidabile derivazioni su tratti di tubo precedentemente installato, con diametro maggiore rispetto alle necessità delle nuove utenze da attivare. Per effettuare le operazioni di saldatura necessarie é fondamentale utilizzare le apposite matrici per il polifusore che, in considerazione della loro particolare geometria, permettono di realizzare perfettamente la fusione delle superfici destinate a saldarsi. Ecco in sintesi le fasi operative per l'impiego corretto del raccordo a sella K47.

#### Preparazione del tubo

Il tratto interessato alla derivazione dovrà essere opportunamente ripulito da eventuali tracce di sporco, ecco perché le parti che si andranno a saldare devono essere trattate con l'apposito raschietto. L'operazione di raschiatura é essenziale per eliminare la pellicola esterna del tubo che, nel corso del tempo, ha sicuramente subito un processo di ossidazione che ostacolerebbe la realizzazione di una saldatura ottimale.

#### Foratura del tubo

La foratura del tubo si effettua con una comune punta da trapano, la cui dimensione deve essere sempre inferiore di 1 mm alla misura della derivazione da realizzare.

Si procede quindi forando il tubo in lavorazione, avendo cura di non danneggiare la parete opposta. Per garantire una perfetta operazione di saldatura, il foro deve essere radiale rispetto alla circonferenza del tubo.







Procedura di fusione

Sul normale polifusore si devono montare le matrici tenendo conto dei seguenti aspetti: l'elemento concavo opera sulla superficie esterna del tubo dove si intendono eseguire le derivazioni e sul foro praticato; mentre l'elemento convesso opera sul raccordo utilizzato per realizzare la derivazione. Dopo essersi accertati che il polifusore abbia raggiunto le condizioni di lavoro (spegnimento della spia verde), si deve simultaneamente operare esercitando una leggera pressione, affinché le superfici delle matrici vadano perfettamente a combaciare con quelle del tubo e del raccordo. I tempi necessari per questa operazione sono ricordati nella tabella qui sotto riportata, tenendo conto che il tempo di riscaldamento indicato si deve calcolare dal momento che le superfici entrano in contatto.

Trascorso tale tempo, si noterà la formazione dei cordoni di materiale fuso.

#### Saldatura

COPR

A compimento del tempo di riscaldamento, si devono estrarre le matrici dagli elementi destinati a connettersi e, tramite un'equilibrata pressione, vanno portati i componenti tubo-raccordo a combaciare entro il tempo indicato nella tabella qui riportata, manetenendoli pressati almeno per ulteriori 30 secondi.

#### Raffreddamento

A conclusione delle operazioni di saldatura, evitare di sollecitare la giunzione, sia meccanicamente che termicamente, per il tempo indicato necessario al raffreddamento. Quest'ultimo deve avvenire a temperatura ambiente.



#### **PARAMETRI OPERATIVI**

| Diametro<br>della derivazione<br>mm | Tempo di<br>riscaldamento<br>s | Tempo di<br>lavoro<br>s | Tempo di<br>raffreddamento<br>min | Punta trapano<br>mm |
|-------------------------------------|--------------------------------|-------------------------|-----------------------------------|---------------------|
| 20                                  | 5                              | 4                       | 2                                 | 19                  |
| 25                                  | 7                              | 4                       | 3                                 | 24                  |
| 32                                  | 8                              | 6                       | 4                                 | 31                  |

#### USO DELLA MATRICE RIPARAFORI

Nel caso in cui il tubo venga accidentalmente forato (punta trapano, ecc.) su di una sola parete del tubo, é possibile provvedere alla riparazione con la matrice riparafori, tenendo presente che la possibilità di riparazione é dimensionalmente legata al diametro della matrice stessa.

L'operazione di riparazione si effettua mediante le seguenti fasi:

- asciugatura e pulizia del tratto interessato alla riparazione
- fusione della superficie interessata all'operazione di saldatura, con la parte maschio della matrice riparafori inserita nel foro da riparare. Per evitare che in tale operazione si fonda anche la parte opposta del tubo a causa di una eccessiva introduzione, ricordiamo che la matrice ha una bussola metallica regolabile in funzione dello spessore del tubo. La regolazione, che avviene attraverso lo spostamento della bussola sulla matrice, é resa possibile dall'allentamento della vite di bloccaggio di cui la bussola é dotata.
- fusione del tronchetto di riparazione (fornito unitamente alla matrice) con la parte femmina della matrice riparafori
- inserimento del tronchetto nel foro (avendo rispettato i tempi di riscaldamento - 5 sec)

 taglio della parte eccedente del tronchetto (avendo rispettato i tempi di raffreddamento)

ATTENZIONE: nel caso in cui il foro da riparare risultasse di diametro maggiore della matrice o addirittura attraversasse da parte a parte il tubo, risulterà inevitabile il taglio completo del tratto e la riparazione potrà essere effettuata utilizzando i normali raccordi o, più semplicemente, usando i manicotti elettrici.













Il PP-R possiede un'elevata resistenza a numerose sostanze aggressive, per cui risulta particolarmente indicato per l'utilizzo in impieghi speciali.

La tabella di seguito riportata fornisce la resistenza del PP-R a diversi agenti chimici; ricordiamo che la tabella si riferisce alla sola materia prima, non sottoposta a sollecitazioni meccaniche esterne ed a pressione atmosferica. Per il trasporto di fluidi combustibili, bisogna ottemperare alle disposizioni di legge in vigore, nel caso in cui tali norme esistano.

Si deve prestare particolare attenzione quando l'impianto é destinato a convogliare acque con contenuto di cloro oltre i limiti consentiti dalla legge e/o più in generale di elementi che inducono fenomeni di ossidazione.

# TABELLA DI RESISTENZA AGLI AGENTI CHIMICI

**SIMBOLOGIA** 

= molto resistente

O = relativamente resiste
Θ = poco resistente
- = non resistente
sol. sat. = soluzione satura
t = tutte le %

| SOSTANZE ESAMINATE      | CONCENTRAZIONE<br>DELLA SOLUZIONE % | TEMF<br>20 | PERATURA (°C)<br>60 |
|-------------------------|-------------------------------------|------------|---------------------|
| Acetica, anidride       | 100                                 | +          |                     |
| Aceto                   | -                                   | +          | +                   |
| Acetico, acido          | 100                                 | +          | +                   |
| Acetone                 | 100                                 | +          | O                   |
| Acido (vedi nome acido) | -                                   |            |                     |
| Accumulatori, acido per | -                                   | +          | +                   |
| Acqua clorica           | sol. sat.                           | 0          | -                   |
| Acqua distillata        | 100                                 | +          | +                   |
| Acqua potabile          | -                                   |            |                     |
| Acqua salmastra         | <del>-</del>                        | +          | +                   |
| Acqua lacustre          | -                                   |            |                     |
| Acqua borica            | sol. sat.(4.9)                      | +          | +                   |
| Acqua ossigenata        | 10                                  |            |                     |
| Acqua ossigenata        | 3                                   | +          | +                   |
| Allume                  | sol. sat.                           |            |                     |
| Alluminio, sale di      | t                                   | +          | +                   |
| Ammoniaca, gas          | 100                                 | +          | +                   |
| Ammoniaca, liquida      | conc.                               | +          | +                   |
| Ammonio acetato         | t                                   |            |                     |
| Ammonio carbonato       | t                                   | +          | +                   |
| Ammonio cloridrico      | t                                   | +          | ÷                   |
| Ammonio fosfato         | t                                   |            |                     |

| SOSTANZE ESAMINATE    | CONCENTRAZIONE TEMPERATURA (<br>DELLA SOLUZIONE % 20 60 |          | ` '      |
|-----------------------|---------------------------------------------------------|----------|----------|
| Ammonio nitrato       | t                                                       | +        | +        |
| Ammonio solfato       | t                                                       | +        | +        |
| Amido                 | t                                                       | +        | +        |
| Ambra, acido dell'    | sol. sat.                                               | +        | +        |
| Anilina               | 100                                                     | +        | $\oplus$ |
| Antigelo              | =                                                       | +        | +-       |
| Argento, sale di      | sol. sat.                                               | +        | +        |
| Aspirina ®            | -                                                       | +        |          |
| Asfalto               | -                                                       | +        | O        |
| Bario cloruro         | †                                                       | +        | +        |
| Benzaldeide           | 100                                                     | +        |          |
| Benzaldeide, liquido  | sol. sat. (0.3)                                         | +        |          |
| Benzolo               | 100                                                     | Θ        | -        |
| Benzoico, acido       | 100                                                     | +        | +        |
| Benzolo etilico       | 100                                                     | О        | -        |
| Birra                 | -                                                       | +        |          |
| Borace                | sol. sat.                                               | +        | +        |
| Borico, acido         | 100                                                     | +        | +        |
| Bromo, liquido        | 100                                                     | -        |          |
| Bromo, vapori secchi  | alta conc.                                              | -        | -        |
| Bromo, vapori secchi  | bassa conc.                                             | O        | -        |
| Butano, liquido       | 100                                                     | +        |          |
| Butano gas            | 100                                                     | +        | +        |
| Butile, gas           | 100                                                     | $\oplus$ |          |
| Butanolo              | 100                                                     | +        |          |
| Burro                 | 100                                                     | +        | +        |
| Butile alcol          | -                                                       | +        | +        |
| Cacao solubile        | -                                                       | +        | +        |
| Calcio cloruro        | sol. sat.                                               | +        | +        |
| Calcio nitrato        | sol. sat.                                               | +        | +        |
| Chinino               | -                                                       | +        |          |
| Candeggina            | 12.5% cloro                                             | O        | 0        |
| Caffé solubile        | -                                                       | +        | +        |
| Calcare               | -                                                       | +        | +        |
| Carbonio solforico    | -                                                       | O        |          |
| Cloro, liquido        | 100                                                     | -        |          |
| Cloro, gas secco      | 100                                                     | -        | -        |
| Cloro, gas umido      | 100                                                     | O        | -        |
| Cloroformio           | 10                                                      | Θ        | -        |
| Clorosolfonico, acido | 100                                                     | -        | -        |
| Cloruro di benzoile   | 100                                                     | Θ        | -        |

+ = molto resistente

⊕ = resistente

O = relativamente resistente

⊖ = poco resistente

- = non resistente

sol. sat. = soluzione satura

t = tutte le %





| SOSTANZE ESAMINATE   | CONCENTRAZIONE<br>DELLA SOLUZIONE % | TEMI<br>20 | PERATURA (°<br>60 | C) |
|----------------------|-------------------------------------|------------|-------------------|----|
| Cloruro etilico      | 100                                 | -          |                   |    |
| Cloridrico, acido    | alta conc.                          | +          | +                 |    |
| Cloridrico, acido    | bassa conc.                         | +          | +                 |    |
| Cromature, sale di   | sol. sat.                           | +          | +                 |    |
| Cromature, bagni di  | -                                   | +          | +                 |    |
| Cromico, acido       | -                                   | +          | 0                 |    |
| Cromo triossido      | sol. sat.                           | +          | -                 |    |
| Cresolo              | 100                                 | +          | 0                 |    |
| Cicloesano           | 100                                 | +          |                   |    |
| Cicloesanolo         | 100                                 | +          | +                 |    |
| Cera                 | -                                   | +          | 0                 |    |
| Coca Cola ®          | -                                   | +          |                   |    |
| Decaedronaffalina    | 100                                 | Θ          | -                 |    |
| Dentifricio, pasta   | -                                   | +          | +                 |    |
| Dietil-etere         | 100                                 | O          |                   |    |
| Dimetil-formamide    | 100                                 | +          |                   |    |
| Diossano             | 100                                 | +          | 0                 |    |
| Dixan, liquido       | -                                   | +          | +                 |    |
| Esano                | 100                                 | +          | 0                 |    |
| Eptano               | 100                                 | $\oplus$   | 0                 |    |
| Etile acetato        | 100                                 | O          | 0                 |    |
| Etilico, alcol       | 100                                 | +          |                   |    |
| Esanolo etilico      | 100                                 | +          |                   |    |
| Etere di petrolio    | 100                                 | +          | 0                 |    |
| Farina               | -                                   | +          |                   |    |
| Fenolo               | sol. sat.                           | +          | +                 |    |
| Ferro, sale di       | sol. sat.                           | +          | +                 |    |
| Formaldeide          | 40                                  | +          | +                 |    |
| Fosforo, acido       | sol. sat.                           | +          | 0                 |    |
| Formico, acido       | -                                   | +          |                   |    |
| Fosforo ossicloruro  | 100                                 | О          | -                 |    |
| Fotografico, acido   | -                                   | +          | +                 |    |
| Gelatina             | -                                   | +          | +                 |    |
| Gin                  | 40                                  | +          |                   |    |
| Glicerina            | 100                                 | +          | +                 |    |
| Glicerina, liquida   | bassa conc.                         | +          | +                 |    |
| Glicolico, acido     | 100                                 | +          | +                 |    |
| Gasolio (Diesel)     | -                                   | +          | О                 |    |
| Glucosio             | -                                   | +          | +                 |    |
| lso propilico, alcol | 100                                 | +          | +                 |    |
| Iso ottano           | 100                                 | +          | О                 |    |
|                      |                                     |            |                   |    |

| +         | = molto resistente         |
|-----------|----------------------------|
| $\oplus$  | = resistente               |
| 0         | = relativamente resistente |
| Θ         | = poco resistente          |
| -         | = non resistente           |
| sol. sat. | = soluzione satura         |
|           | = tutte le %               |

| SOSTANZE ESAMINATE         | CONCENTRAZIONE<br>DELLA SOLUZIONE % | TEMP<br>20     | ERATURA (°C)<br>60 |
|----------------------------|-------------------------------------|----------------|--------------------|
| lodio, tintura di          | -                                   | + <sub>s</sub> |                    |
| Lanolina                   | -                                   | +              | O                  |
| Latte                      | -                                   | +              | +                  |
| Lattico, acido             | -                                   | +              | +                  |
| Liquori                    | †                                   | +              |                    |
| Limonata                   | -                                   | +              |                    |
| Magnesio, sale di          | sol. sat.                           | +              | +                  |
| Margarina                  | -                                   | +              | +                  |
| Marmellata                 | -                                   | +              | +                  |
| Maionese                   | =                                   | +              |                    |
| Mentolo                    | -                                   | +              |                    |
| Metanolo                   | 100                                 | +              | +                  |
| Metile cloruro             | 100                                 | O              |                    |
| Metil-etil-chetone         | 100                                 | +              | O                  |
| Mercurio                   | 100                                 | +              | +                  |
| Muriatico, acido           | 10                                  | +              | +                  |
| Nafta                      | 100                                 | +              |                    |
| Naftalina                  | 100                                 | +              |                    |
| Nitrico, acido             | 10                                  | $\oplus$       | -                  |
| Nitrobenzene               | 100                                 | $\oplus$       | O                  |
| Nickel, sale di            | sol. sat.                           | +              | +                  |
| Oleico, acido              | 100                                 | +              |                    |
| Oleum                      | t                                   | -              | -                  |
| Olio di arachidi           | -                                   | +              | $\oplus$           |
| Olio animale               | -                                   | +              | <b>⊕</b>           |
| Olio di canfora            | -                                   | +              | +                  |
| Olio combustibile          | -                                   | +              | O                  |
| Olio di cocco              | -                                   | +              | $\oplus$           |
| Olio di mandorla           | -                                   | +              | +                  |
| Olio di merluzzo           | -                                   | +              |                    |
| Olio motori                | -                                   | +              | 0                  |
| Olio menta piperita        | -                                   | +              | +                  |
| Olio semi mais             | -                                   | +              | 0                  |
| Olio semi di lino          | -                                   | +              | +                  |
| Olio di chiodi di garofano | -                                   | +              |                    |
| Olio di resine di pini     | -                                   | +              | $\oplus$           |
| Olio di oliva              | -                                   | +              | +                  |
| Olio ossalico              | -                                   | +              | +                  |
| Olio di silicone           | -                                   | +              | $\oplus$           |
| Olio di trementina         | -                                   | O              | _                  |
| Olio di paraffina          | -                                   | +              | О                  |

+ = molto resistente

⊕ = resistente

O = relativamente resistente

⊖ = poco resistente

- = non resistente

sol. sat. = soluzione satura

t = tutte le %





| SOSTANZE ESAMINATE    | CONCENTRAZIONE<br>DELLA SOLUZIONE % | TEMI<br>20 | PERATURA (°C)<br>60 |
|-----------------------|-------------------------------------|------------|---------------------|
| Ottano                | -                                   | +          | О                   |
| Ozono                 | <0.5 ppm.                           | $\oplus$   | Θ                   |
| Panna                 | -                                   | +          |                     |
| Paraffina             | 100                                 | +          | +                   |
| Petrolio              | 100                                 |            |                     |
| Pepe                  | -                                   | +          | O                   |
| Profumo               | -                                   | +          | +                   |
| Propano, liquido      | 100                                 | +          |                     |
| Propano, gas          | 100                                 | +          |                     |
| Piridina              | 100                                 | +          | +                   |
| Potassio carbonato    | sol. sat.                           | +          | 0                   |
| Potassio clorato      | sol. sat. (7.3)                     | +          | +                   |
| Potassio cloruro      | sol. sat.                           | +          | +                   |
| Potassio cromato      | sol. sat. (12)                      | +          | +                   |
| Potassio ioduro       | sol. sat.                           |            |                     |
| Potassio nitrato      | sol. sat.                           | +          | +                   |
| Potassio permanganato | sol. sat. (6.4)                     |            |                     |
| Potassio persolfato   | sol. sat. (0.5)                     | +          | +                   |
| Potassio solfato      | sol. sat.                           | +          | +                   |
| Rame, sale di         | sol. sat.                           | +          | $\oplus$            |
| Rame nitrato          | 30%                                 | +          |                     |
| Sale asciutto         | -                                   | +          | +                   |
| Sapone liquido        | 10                                  |            |                     |
| Senape                | -                                   | +          | +                   |
| Soda , acqua di       | -                                   |            |                     |
| Soda caustica         | 100                                 | +          | +                   |
| Sodio bicarbonato     | sol. sat.                           |            |                     |
| Sodio carbonato       | sol. sat.                           | +          | +                   |
| Sodio clorato         | 25                                  | +          | +                   |
| Sodio clorito         | 5                                   |            |                     |
| Sodio cloruro         | sol. sat.                           | +          | +                   |
| Sodio ipoclorito      | 5                                   | +          |                     |
| Sodio nitrato         | sol. sat.                           | +          | +                   |
| Sodio perborato       | sol. sat. (1.4)                     | +          | +                   |
| Sodio solfato         | sol. sat.                           |            |                     |
| Sodio fosfato         | sol. sat.                           | +          | +                   |
| Sodio solfito         | sol. sat.                           | +          | +                   |
| Sodio tiosolfato      | sol. sat.                           | +          |                     |
| Stagno II cloruro     | sol. sat.                           | +          | +                   |
| Succo di mela         | -                                   |            |                     |
| Succo di arance       | -                                   | +          | +                   |
|                       |                                     |            |                     |

| +         | = molto resistente         |
|-----------|----------------------------|
| $\oplus$  | = resistente               |
| О         | = relativamente resistente |
| Θ         | = poco resistente          |
| _         | = non resistente           |
| sol. sat. | = soluzione satura         |
| t         | = tutte le %               |

# 7. RESISTENZA CHIMICA

|           | SIMBOLOGIA                 |
|-----------|----------------------------|
| +         | = molto resistente         |
| $\oplus$  | = resistente               |
| 0         | = relativamente resistente |
| Θ         | = poco resistente          |
| _         | = non resistente           |
| sol. sat. | = soluzione satura         |

= tutte le %

| SOSTANZE ESAMINATE        | CONCENTRAZIONE % | TEMI<br>20 | PERATURA (°C)<br>60 |
|---------------------------|------------------|------------|---------------------|
| Succo di limone           | -                | +          | +                   |
| Succo di frutta           | <del>-</del>     | +          | +                   |
| The                       | <del>-</del>     | +          | +                   |
| Trementina                | 100              |            |                     |
| Tetracloruro di carbonio  | 100              | -          |                     |
| Tetracloroetilene         | 100              | Θ          | -                   |
| Tetraidrofurano           | 100              | 0          | -                   |
| Tetracloruro di naftalina | 100              | 0          | -                   |
| Tiofene                   | 100              | 0          | -                   |
| Tricloroetilene           | 100              | O          | -                   |
| Trichesifosfato           | -                | 0          | Θ                   |
| Urea                      | sol. sat.        | +          |                     |
| Vaniglia                  | -                | +          | +                   |
| Vaselina                  | -                | +          | +                   |
| Xilene                    | 100              | +          | 0                   |







Il calcolo delle perdite di carico (o pressione) rappresenta un passo fondamentale nella progettazione degli impianti idrotermosanitari. Tale parametro risulta infatti strettamente connesso con la portata dell'impianto e, quindi, con la quantità di acqua che, nell'unità di tempo, giunge alle singole utenze.

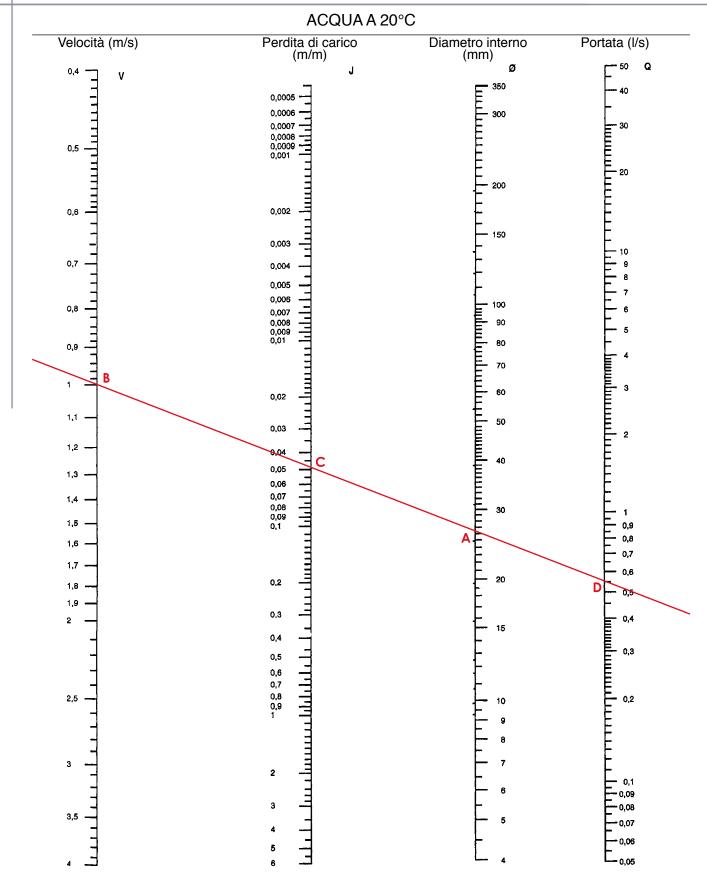
Le perdite di carico si suddividono in distribuite e localizzate. La somma di tali componenti fornisce il valore delle perdite di carico totali dell'impianto.

Le perdite di carico distribuite sono rappresentate dalle resistenze continue che un fluido incontra durante il moto in un condotto. Queste sono costituite dagli attriti interni al fluido stesso, dovuti alla viscosità, e da quelli che si generano per il contatto con la superficie interna del condotto.

Le perdite distribuite si misurano in unità di pressione (pascal, bar, metri o millimetri di colonna d'acqua); in genere la misura é riferita ad una lunghezza unitaria di condotto.

Nel caso specifico dei tubi del sistema COPRAX e COPRAX+ALUMINIUM, le perdite di carico distribuite si determinano mediante i diagrammi riportati nelle pagine 42-43 (determinati per acqua a 20°C).

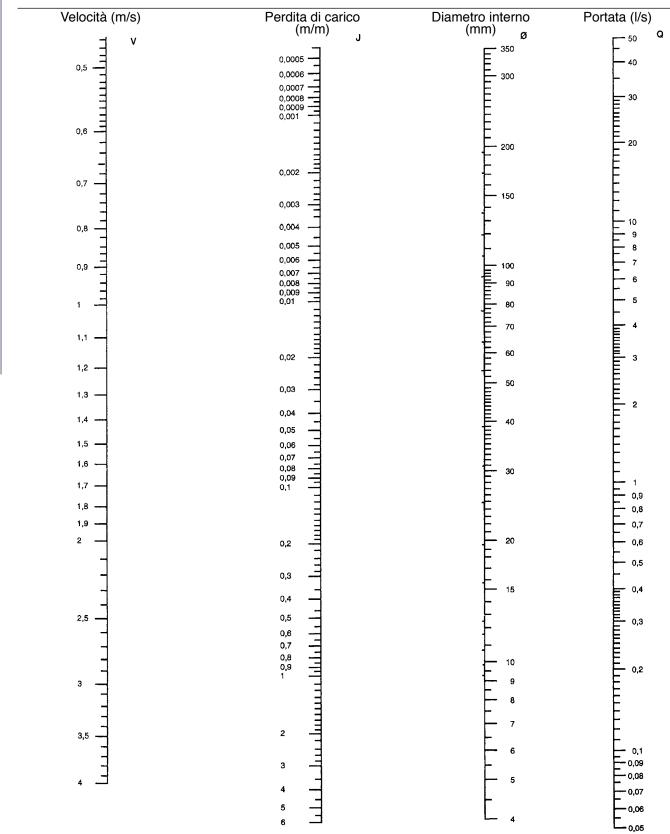
### **DIAGRAMMI PERDITE DI CARICO**


Per utilizzare il monogramma, é necessario fissare almeno due grandezze, di cui una é la dimensione del tubo e la seconda generalmente é la portata o la velocità.

Tubo PN 20: ø 32 x 5,4 ø int. = mm 21,2 (punto A)

velocità 1 m/s (punto B)

Congiungendo con una retta i punti A e B si individuano i punti C e D che indicano rispettivamente una perdita di carico J = 0,065 m/m e una portata Q = 0,036 l/s.










COPRA





Le perdite di carico localizzate sono rappresentate dalle irregolarità di percorso (curve, valvole, riduzioni, ecc) che un fluido incontra durante il moto in un condotto.

Esistono diversi modi per esprimere le perdite

di carico localizzate: nella nostra trattazione consideriamo quello che fa riferimento alla determinazione dei cosiddetti "coefficienti di resistenza localizzata" associati ai raccordi della gamma COPRAX.

| FIGURA  | DESCRIZIONE                | SIMBOLO GRAFICO                         | COEFFICIENTE<br>RESISTENZA |
|---------|----------------------------|-----------------------------------------|----------------------------|
| K10     | manicotto                  |                                         | 0,25                       |
| K40     | riduzione a 2 dimensioni   |                                         | 0,55                       |
|         | riduzione ≥ 3 dimensioni   |                                         | 0,85                       |
| K20     | gomito 90°                 |                                         | 2,0                        |
| K70     | gomito 45°                 |                                         | 0,6                        |
| K30-K35 | raccordo a T               | <b>→</b>                                | 1,8                        |
|         | raccordo a T ridotto       | <b>▼</b> I                              | 3,6                        |
| K30-K35 | raccordo a T               | <b>→</b>                                | 1,3                        |
|         | raccordo a T ridotto       | H                                       | 2,6                        |
| K30-K35 | raccordo a T               | <del></del>                             | 4,2                        |
|         | raccordo a T ridotto       | <b>V</b> I                              | 9,0                        |
| K30-K35 | raccordo a T               | <del>←</del>  →                         | 2,2                        |
|         | raccordo a T ridotto       | TI                                      | 5,0                        |
| K33-K31 | raccordo a T filettato     | →   →   · · · · · · · · · · · · · · · · | 0,8                        |
| K11     | giunto filettato M         | ——————————————————————————————————————  | 0,4                        |
| K12     | giunto filettato M ridotto |                                         | 0,85                       |
| K21     | gomito filettato M         | <del>""</del>                           | 2,2                        |



Una volta noti i coefficienti "r", le perdite di carico localizzate dell'impianto si determinano mediante la seguente formula:

$$z = \sum r \cdot v^2 \cdot \gamma / 2g \approx 5 \cdot \sum r \cdot v^2$$
 (mbar)

dove:

 $\gamma$  = 999.7 kg/m3 peso specifico dell'acqua

g = 9.81 m/s2 accelerazione di gravità

v = velocità dell'acqua in m/s

 $\Sigma$ = sommatoria

PERDITA DI CARICO Z IN FUNZIONE DI R=1 CON ACQUA A 10°C PER DIVERSE VELOCITA' V

|   | VELOCITA' DI<br>SCORRIMENTO v<br>(m/s) | PERDITA DI CARICO<br>z PER r=1<br>(mbar) | VELOCITA' DI<br>SCORRIMENTO v<br>(m/s) | PERDITA DI CARICO<br>z PER r=1<br>(mbar) |
|---|----------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|
| I | 0.1                                    | 0.1                                      | 2.6                                    | 33.8                                     |
|   | 0.2                                    | 0.2                                      | 2.7                                    | 36.5                                     |
|   | 0.3                                    | 0.5                                      | 2.8                                    | 39.2                                     |
|   | 0.4                                    | 0.8                                      | 2.9                                    | 42.1                                     |
|   | 0.5                                    | 1.3                                      | 3.0                                    | 45                                       |
|   | 0.6                                    | 1.8                                      | 3.1                                    | 48                                       |
|   | 0.7                                    | 2.5                                      | 3.2                                    | 51                                       |
|   | 0.8                                    | 3.2                                      | 3.3                                    | 55                                       |
| ı | 0.9                                    | 4.1                                      | 3.4                                    | 58                                       |
|   | 1.0                                    | 5.0                                      | 3.5                                    | 61                                       |
| ı | 1.1                                    | 6.1                                      | 3.6                                    | 65                                       |
|   | 1.2                                    | 7.2                                      | 3.7                                    | 68                                       |
| ı | 1.3                                    | 8.5                                      | 3.8                                    | 72                                       |
|   | 1.4                                    | 9.8                                      | 3.9                                    | 76                                       |
| ı | 1.5                                    | 11.3                                     | 4.0                                    | 80                                       |
|   | 1.6                                    | 12.8                                     | 4.1                                    | 84                                       |
|   | 1.7                                    | 14.5                                     | 4.2                                    | 88                                       |
|   | 1.8                                    | 16.2                                     | 4.3                                    | 92                                       |
| ı | 1.9                                    | 18.1                                     | 4.4                                    | 97                                       |
|   | 2.0                                    | 20.0                                     | 4.5                                    | 101                                      |
|   | 2.1                                    | 22.1                                     | 4.6                                    | 106                                      |
|   | 2.2                                    | 24.2                                     | 4.7                                    | 110                                      |
|   | 2.3                                    | 26.5                                     | 4.8                                    | 115                                      |
|   | 2.4                                    | 28.8                                     | 4.9                                    | 120                                      |
|   | 2.5                                    | 31.3                                     | 5.0                                    | 125                                      |
|   |                                        |                                          |                                        |                                          |



#### PERDITE DI CARICO TOTALI

Come già accennato in precedenza, la perdita di carico totale dell'impianto si ricava dalla somma di quelle distribuite con quelle localizzate:

$$\Delta P = l \cdot R + z \cdot 10$$
 dove:

 $\Delta P$  = perdita di carico totale (mm c.a.)

l = lunghezza della tubazione (m)

R = perdita di carico continua (mm c.a./m)

z = perdita di carico localizzata (mbar)

#### DILATAZIONE E STAFFAGGI

Ogni materiale che subisca nel tempo una variazione di temperatura, reagisce modificando in maniera più o meno evidente le proprie dimensioni. Questo fenomeno prende il nome di dilatazione termica e può manifestarsi sia con un aumento delle dimensioni del corpo, nel caso in cui la variazione di temperatura é positiva, sia con una contrazione, cioé con una diminuzione delle dimensioni, nel caso in cui la variazione é negativa.

La dilatazione termica può essere lineare, superficiale o cubica, a seconda che interessi in modo prevalente una, due o tutte e tre le dimensioni del corpo.

Nel caso delle tubazioni si verifica soprattutto una dilatazione lineare, in quanto la lunghezza é la dimensione che predomina sulle altre.

Il parametro che fornisce un'indicazione sulla tendenza di un tubo a dilatare in presenza di una differenza di temperatura é il coefficiente di dilatazione lineare.

Quando si progettano e si realizzano le installazioni é perciò indispensabile conoscere il valore di tale coefficiente, per determinare l'entità della dilatazione e adottare gli accorgimenti opportuni per evitare che questo fenomeno possa provocare danni alle tubazioni.





a Legge 10/91, relativa al contenimento dei consumi energetici, e il decreto attuativo DPR 412/93, impone che le tubazioni utilizzate per realizzare circuiti termici siano opportunamente ricoperte da materiale isolante.

Ovviamente nel caso di impianti termici e/o nei tratti di acqua calda sanitaria, l'isolamento ha lo scopo di evitare dispersioni, mentre per quelli di condizionamento oltre ad evitare l'innalzamento della temperatura del fluido convogliato impedisce la formazione di condensa sulla superficie del tubo a causa dell'umidità dell'aria. A pari spessore dell'isolante, il risparmio energetico conseguente sarà tanto più alto quanto maggiore è il potere coibente dell'isolante e quanto minore è la

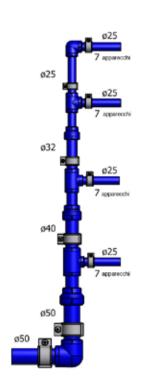
superficie di scambio termico.

Il DPR 412/93, fissa i valori minimi dello spessore dell'isolante in funzione della sua conduttiità termica e del diametro del tubo da isolare; stabilisce inoltre che gli spessori riportati nella seguente tabella siano da applicare:

CASO A tal quale, per tratti posti in locali non riscaldati (es. garage, cantine, etc.)

CASO B moltiplicati per un coefficiente riduttivo 0,5 per tratti di montante posti all'interno dei muri perimetrali dell'edificio

CASO C moltiplicati per un coefficiente riduttivo 0,3 per tratti posti in strutture nè affacciate all'esterno nè adiacenti a locali non riscaldati


### SPESSORE MATERIALE ISOLANTE (mm)

| Conduttività<br>termica  | Diametro esterno delle tubazioni<br>mm |            |            |            |            |       |  |  |
|--------------------------|----------------------------------------|------------|------------|------------|------------|-------|--|--|
| dell'isolante<br>W / m°K | <20                                    | da 20 a 39 | da 40 a 59 | da 60 a 79 | da 80 a 99 | > 100 |  |  |
| 0,030                    | 13                                     | 19         | 26         | 33         | 37         | 40    |  |  |
| 0,032                    | 14                                     | 21         | 29         | 36         | 40         | 44    |  |  |
| 0,034                    | 15                                     | 23         | 31         | 39         | 44         | 48    |  |  |
| 0,036                    | 17                                     | 25         | 34         | 43         | 47         | 52    |  |  |
| 0,038                    | 18                                     | 28         | 37         | 46         | 51         | 56    |  |  |
| 0,040                    | 20                                     | 30         | 40         | 50         | 55         | 60    |  |  |
| 0,042                    | 22                                     | 32         | 43         | 54         | 59         | 64    |  |  |
| 0,044                    | 24                                     | 35         | 46         | 58         | 63         | 69    |  |  |
| 0,046                    | 26                                     | 38         | 50         | 62         | 68         | 74    |  |  |
| 0,048                    | 28                                     | 41         | 54         | 66         | 72         | 79    |  |  |
| 0,050                    | 30                                     | 44         | 58         | 71         | 77         | 84    |  |  |



### ESEMPIO DI DIMENSIONAMENTO DI UNA RETE DI DISTRIBUZIONE DI ACQUA FREDDA

| APPARECCHI ALLA     | CCIATI  |
|---------------------|---------|
| E RELATIVE PO       | RTATE   |
| (Norma UNI 918      | 32-87)  |
| 1 Lavabo            | 0.1 l/s |
| 1 Vaso c/cassetta   | 0.1 l/s |
| 1 Bidet             | 0.1 l/s |
| 1 Vasca da bagno    | 0.1 l/s |
| 1 Lavello da cucina | 0.2 l/s |
| 1 Lavastoviglie     | 0.2 l/s |
| 1 Lavatrice         | 0.2 l/s |
|                     |         |
| 7 Apparecchi        | 1.0 l/s |



| N°<br>APPARECCHI | PORTATE<br>TOTALI<br>I/s | FATTORE DI<br>CONTEMP.<br>% | PORTATE<br>CONTEMP.<br>I/s | DIAMETRO<br>COPRAX<br>mm | PORTATE<br>COPRAX<br>I/s | PERDITE DI<br>CARICO<br>mmca/m | VELOCITÀ<br>ACQUA<br>m/s |
|------------------|--------------------------|-----------------------------|----------------------------|--------------------------|--------------------------|--------------------------------|--------------------------|
| 7                | 1.0.                     | 55.0                        | 0.55                       | 25                       | 0.6                      | 525                            | 2.8                      |
| 14               | 2.0                      | 38.0                        | 0.76                       | 32                       | 8.0                      | 270                            | 2.3                      |
| 21               | 3.0                      | 33.0                        | 0.99                       | 40                       | 1.0                      | 135                            | 1.8                      |
| 28               | 4.0                      | 28.0                        | 1.12                       | 50                       | 1.2                      | 64                             | 1.4                      |

Nota: le portate contemporanee tengono conto della probabilità di apertura simultanea dei rubinetti.





### DILATAZIONE DEI TUBI DEL SISTEMA COPRAX E COPRAX FIBRA

I tubi del sistema COPRAX e COPRAX FIBRA non sfuggono naturalmente al fenomeno della dilatazione termica, che perciò dovrà essere attentamente valutato in fase di progettazione e di installazione.

Bisogna innanzitutto distinguere due situazioni dal punto di vista della posa:

- installazione posata sotto traccia
- installazione posata esternamente (a vista)

Nel primo caso l'effetto della dilatazione risulta trascurabile, in quanto il materiale é in grado di assorbire in sé tale effetto, non richiedendo perciò alcun accorgimento specifico in merito.

Nel caso di tubazioni installate a vista, sottoposte a salti termici non trascurabili, é invece indispensabile tenere conto della dilatazione termica, procedendo come descritto nel seguito.

### CALCOLO DELLA DILATAZIONE

La variazione di lunghezza ΔL di un tubo **COPRAX**, a seguito di una variazione di temperatura, può essere determinata mediante la seguente formula:

 $\Delta L = \alpha \cdot L \cdot \Delta T$  dove:

 $\Delta L = variazione di lunghezza del tubo (mm)$ 

 $\alpha$  = coefficiente di dilatazione lineare del materiale, che per il **COPRAX** vale 0.15 mm/m°C, mentre per il **COPRAX FIBRA** vale 0.035 mm/m°C

L = lunghezza del tratto di tubo libero di poter dilatare (m)

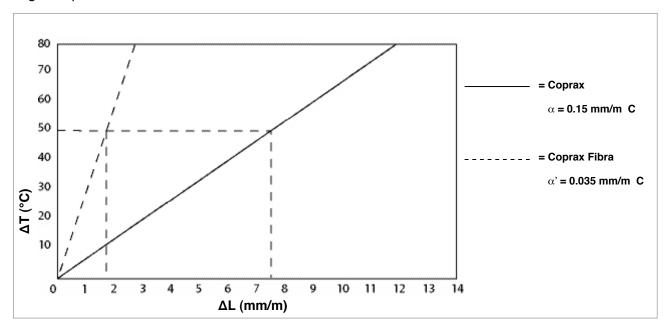
 $\Delta T = \,$  differenza di temperatura fra il momento del montaggio e la temperatura in fase di esercizio (°C)

### **ESEMPIO 1: DILATAZIONE**

| L    | = 6 m;                                     |  |
|------|--------------------------------------------|--|
| Tm   | = 20°C (temperatura di montaggio);         |  |
| Tmax | = 75°C (temperatura massima di esercizio); |  |
|      |                                            |  |
|      | da cui                                     |  |
|      |                                            |  |
|      |                                            |  |

 $\Delta L = \Omega \cdot L \cdot \Delta T = 0.15 \cdot 6 \cdot 55 = 49.5 \text{ mm (tubo Coprax)}$   $\Delta L = \Omega \cdot L \cdot \Delta T = 0.035 \cdot 6 \cdot 55 = 11.55 \text{ mm (Coprax Fibra)}$ 

In questo caso il tubo subisce una variazione positiva (dilatazione) della sua lunghezza iniziale.


### **ESEMPIO2: CONTRAZIONE**

| L    | = 6 m;                                                                                            |
|------|---------------------------------------------------------------------------------------------------|
| Tm   | = 20°C (temperatura di montaggio);                                                                |
| Tmin | = 5°C (temperatura minima di esercizio, ad es. condizionamento);                                  |
|      |                                                                                                   |
|      | da cui                                                                                            |
|      |                                                                                                   |
|      | $\Delta L = a \cdot L \cdot \Delta T = 0.15 \cdot 6 \cdot (25) = 22.5 \text{ mm (tubo Coprax)}$   |
|      | $\Delta L = a' \cdot L \cdot \Delta T = 0.035 \cdot 6 \cdot (25) = 5.2 \text{ mm (Coprax Fibra)}$ |

In questo caso il tubo subisce una variazione negativa (contrazione) della sua lunghezza iniziale.

### CALCOLO DI AL IN FUNZIONE DI AT, PER METRO DI TUBO

Il calcolo della grandezza  $\Delta L$  può essere effettuato anche per via grafica, mediante il diagramma qui di seguito riportato.



### ESEMPIO RELATIVO AL DIAGRAMMA

| ΔΤ | = 50°C                         | con              | Tm = 20°C al montaggio Tmax = 70°C massima d'esercizio |
|----|--------------------------------|------------------|--------------------------------------------------------|
| ΔL | = a)<br>b)                     | 7.5 mm<br>1.7 mm | per tubo Coprax<br>per tubo Coprax + Aluminium         |
| •  | ndo tali vald<br>Iell'allungan | •                | nghezza effettiva del tubo si ottiene                  |

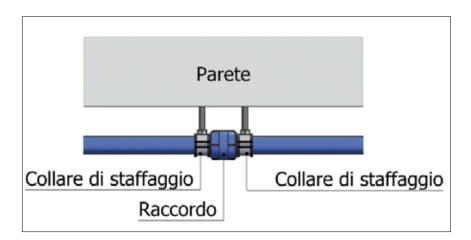




### TECNICA INSTALLATIVA IN PRESENZA DI DILATAZIONE

Una volta calcolata la variazione di lunghezza della tubazione, é necessario attuare le tecniche necessarie a fare in modo che gli effetti di tale fenomeno non provochino problemi alla tubazione stessa. A tal proposito é possibile intervenire mediante le seguenti procedure:

- esecuzione dei punti fissi e scorrevoli;
- compensazione con bracci dilatanti.


#### **PUNTI FISSI E PUNTI SCORREVOLI**

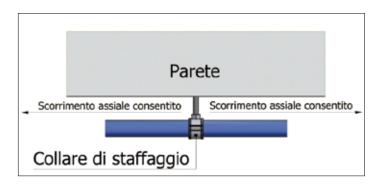
Vengono indicati con questo nome i vincoli che rendono solidale la tubazione con le parti murarie dell'edificio, impedendone totalmente o solo parzialmente i movimenti conseguenti alla dilatazione termica.

I punti fissi hanno la funzione di ostacolare i movimenti dei tubi e per tale ragione devono realizzare un collegamento rigido fra l'installazione da una parte e le opere murarie dall'altra. Si realizzano mediante l'impiego di collari rigidi, costituiti da un elemento di presa, generalmente metallico, rivestito in materiale gommoso dalla parte del tubo e di un componente per il fissaggio alla parete dalla parte opposta. La parte in gomma (o in altro materiale simile) ha naturalmente la funzione di non innescare pericolosi fenomeni di intaglio sulla superficie del tubo.

I punti fissi vanno posizionati, di norma, in corrispondenza dei cambiamenti di direzione dell'installazione (diramazioni, gomiti, ecc) per impedire che le dilatazioni possano scaricarsi proprio in tali punti. In ogni caso é buona regola realizzare sempre il punto fisso a ridosso di una giunzione del tubo, effettuata con un manicotto o con un qualunque altro raccordo a saldare. Risulta facile capire che la presenza dei punti fissi limita la lunghezza dei tratti di tubo liberi di poter dilatare, diminuendo di conseguenza il relativo valore di ΔL.

# ESEMPIO DI PUNTO FISSO



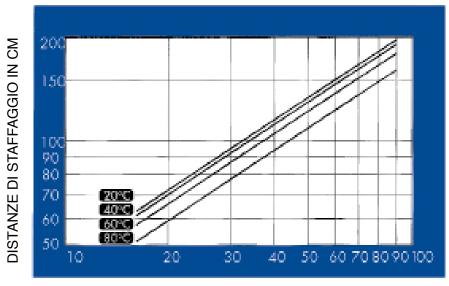

I punti scorrevoli permettono invece lo scorrimento assiale (in entrambi i sensi) del tubo. Per questo motivo devono essere posizionati lontano dalle zone di giunzione con i raccordi, su un tratto libero della superficie del tubo. Il collare che svolge la funzione di punto scorrevole non deve assolutamente presentare parti che possano danneggiare la

superficie esterna del tubo.

I punti scorrevoli fungono anche da sostegno e garantiscono (se posizionati in numero sufficiente) il mantenimento della geometria rettilinea dell'installazione in presenza della sollecitazione termica.

Si vedano a tal proposito "le distanze di staffaggio".

## ESEMPIO DI PUNTO SCORREVOLE




### **DISTANZE DI STAFFAGGIO**

Per una corretta installazione dei tubi del sistema COPRAX e COPRAX+ALUMINIUM nella posa fuori traccia, forniamo qui di seguito il diagramma relativo al calcolo delle distanze di staffaggio. Le distanze

dei collari sono indipendenti dal posizionamento orizzontale o verticale dei tubi.

Nel caso dell'impiego del tubo COPRAX+ALUMINIUM la minore dilatazione che caratterizza questo tubo, permette di aumentare le distanze di staffaggio.



DIAMETRO ESTERNO DEL TUBO IN MM





### **COMPENSAZIONE CON BRACCI DILATANTI**

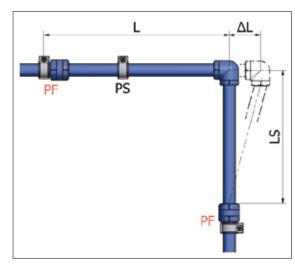
Con l'impiego di tale tecnica si realizza l'installazione conferendo al percorso una geometria che consenta l'assorbimento della dilatazione. A tale scopo vengono realizzati, in corrispondenza dei cambiamenti di direzione (gomiti, tee), dei bracci dilatanti, in cui il tubo ha la possibilità di dilatare in presenza della sollecitazione termica.

Il calcolo di questi bracci dilatanti si effettua

mediante la seguente formula:

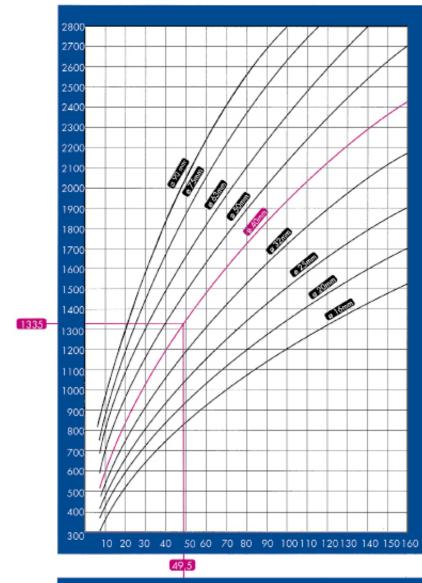
LS = 
$$\mathbf{F} \cdot \mathbf{J} (\mathbf{d} \cdot \Delta \mathbf{L})$$
 dove:

LS = lunghezza del braccio dilatante (mm)


F = costante del materiale (per il PP = 15)

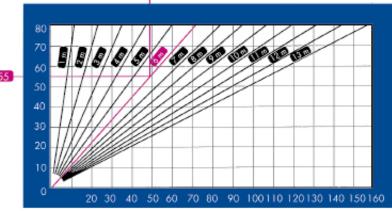
d = diametro esterno del tubo (mm)

 $\Delta L$  = variazione di lunghezza del tubo (mm)


| Si voglia calc          | colare il braccio di dilatazione relativo ad un tratto di tubo COPRAX dove: |
|-------------------------|-----------------------------------------------------------------------------|
| d                       | = 40 mm (diametro esterno);                                                 |
| L                       | = 6 m;                                                                      |
| ΔΤ                      | = 55°C                                                                      |
|                         |                                                                             |
| Come calcola            | ato in precedenza si ha un ΔL = 49.5 mm                                     |
| Per cui:                |                                                                             |
| $LS = F \cdot \sqrt{d}$ | • $\Delta L = 15 \cdot \sqrt{(40 \cdot 49.5)} = 667 \text{ mm}$             |

# ESEMPIO DI BRACCIO DILATANTE





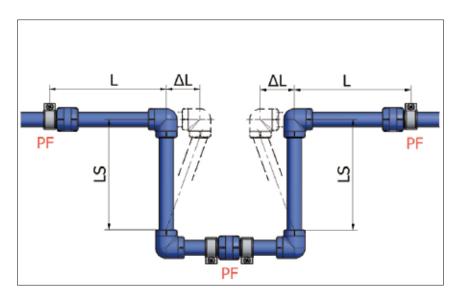

### CALCOLO DEL BRACCIO DILATANTE PER MEZZO DI DIAGRAMMI (COPRAX)

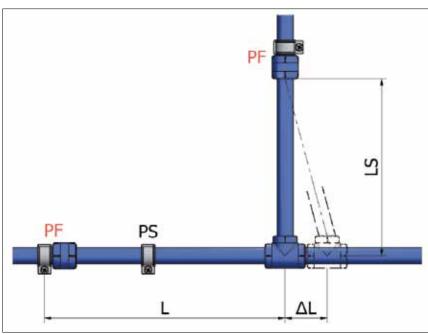


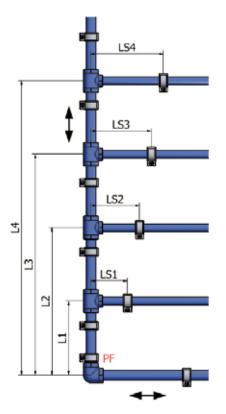


Lunghezza minima del braccio dilatante in mm

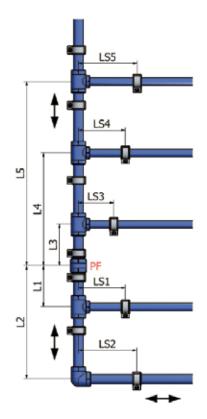



variazione di lunghezza ΔL in mm

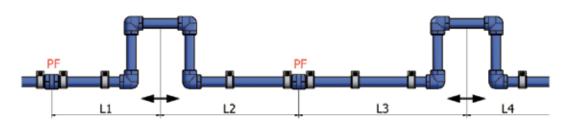




### **ESEMPI GRAFICI**

Mostriamo di seguito alcuni esempi di corretta installazione fuori traccia del sistema COPRAX, con


le diverse tecniche adottate per tenere conto della dilatazione termica del materiale.








Punto fisso alla base della colonna montante



Punto fisso in una zona intermedia della colonna montante



Assorbimento di lunghezza con anello di compensazione in una conduttura diritta







L'impiego di un sistema di tubi e raccordi in materiale plastico offre una serie di vantaggi sotto diversi punti di vista, come ampiamente descritto nel capitolo 2 "Proprietà del sistema COPRAX" (pag. 6). Per beneficiare a pieno di tali proprietà é però indispensabile conoscere a fondo ogni aspetto inerente il prodotto che ci si appresta ad utilizzare. Per rendere più agevole questo compito all'utilizzatore del sistema COPRAX, abbiamo approntato una serie di importanti suggerimenti che andiamo qui di seguito a descrivere.

diretta dei raggi ultravioletti (sole, lampade neon). Tali raggi, infatti, generano nel materiale un fenomeno di invecchiamento, che determina perdita delle caratteristiche chimicouna fisiche inizialmente possedute. Nel caso del tubo COPRAX+ALUMINIUM, sono invece consentite le installazioni a vista, ma all'interno dell'edificio, mentre sono sconsigliate quelle che prevedono una esposizione diretta ai raggi U.V., in quanto tale azione deteriora progressivamente prima la pellicola esterna in PP-R, successivamente la lamina di alluminio ed infine il tubo sottostante.

### **CONDIZIONI DI ESERCIZIO**

L'impiego del COPRAX e del COPRAX+ALUMINIUM nell'ambito delle condizioni di esercizio non crea assolutamente alcun problema al materiale.

Al contrario, superare le condizioni limite di impiego, può pregiudicare la resistenza del prodotto.

É quindi indispensabile prendere ogni provvedimento affinché ciò non accada, salvaguardando così non solo l'integrità del sistema, ma spesso anche quella dell'utente dell'impianto.

#### RAGGI ULTRAVIOLETTI

Il COPRAX non deve essere mai installato o immagazzinato in modo che possa subire l'azione

### MANIPOLAZIONE DEI TUBI

É indispensabile evitare che i fasci di tubo o le singole barre subiscano, durante gli spostamenti, l'immagazzinaggio e l'utilizzo in cantiere, eccessive sollecitazioni esterne, come scuotimenti, urti, martellate ed azioni simili. Questo comportamento, valido in ogni situazione, é tanto più necessario quanto minore é la temperatura ambiente. La bassa temperatura contribuisce infatti ad irrigidire il materiale, diminuendone perciò il comportamento elastico in risposta a sollecitazioni esterne.



### FORMAZIONE DI GHIACCIO

La trasformazione dell'acqua dallo stato liquido a quello solido (ghiaccio) é accompagnata da un aumento di volume in grado di generare nell'installazione delle sollecitazioni che possono superare la resistenza del materiale. É pertanto necessario adottare gli accorgimenti opportuni affinché ciò non avvenga, curando di svuotare completamente l'impianto una volta ultimato il collaudo, se esiste il pericolo di congelamento.

#### **CURVATURA**

Qualora si vogliano eseguire delle curvature con i tubi del sistema **COPRAX**, é bene operare come segue:

per raggi di curvatura molto ampi si può procedere a freddo, per raggi prossimi, ma non inferiori a 8 volte la misura del diametro del tubo in lavorazione, é opportuno riscaldare il tubo con aria calda.

Si deve evitare l'uso della fiamma.

Rmin ≥ 8 D









### CONTATTO CON CORPI TAGLIENTI

L'eventuale contatto con corpi a spigolo vivo (scaglie di mattoni ad esempio) provoca, sulla superficie esterna dei tubi, degli intagli che possono in seguito generare delle rotture. É quindi necessario impedire che ciò possa accadere, sia in fase di immagazzinaggio che di installazione, evitando comunque di utilizzare tubi che presentino accidentali scalfitture o incisioni.









# RACCORDI CON INSERTO METALLICO FILATTATO FEMMINA

Utilizzando i raccordi del sistema COPRAX dotati di inserto metallico con filetto femmina, si deve evitare di applicare coppie di serraggio elevate nella realizzazione di giunzioni con raccordi maschi. Consigliamo, oltre all'utilizzo di una chiave proporzionata al diametro dei raccordi, di non interporre eccessive quantità di canapa tra i filetti da assemblare. É comunque preferibile l'uso del teflon. Si dovrà altresì tenere conto che la parte maschio abbia una sufficiente lunghezza destinata all'accoppiamento; generalmente é auspicabile che almeno un filetto rimanga libero dall'accoppiamento.

Nel caso in cui le esigenze impiantistiche rendano necessario l'accoppiamento di un raccordo del sistema COPRAX ad un tubo od un raccordo in ferro, si consiglia l'impiego della raccorderia COPRAX con filetto maschio per realizzare tale unione.

### **TAGLIO DEI TUBI**

Si suggerisce di utilizzare strumenti che permettano un taglio esente da bave e perpendicolare al tubo.





#### **SALDATURA**

Le parti da saldare devono essere sempre ben pulite ed il termostato del polifusore deve indicare che lo stesso é in temperatura. Sia durante che dopo la saldatura si deve evitare di sottoporre a torsione le parti giuntate. Si veda a tal proposito a pag. 25 "Saldature mediante polifusore".





# 12. COLLAUDO IMPIANTO

Il collaudo dell'impianto (secondo la norma ENV12108:2001) è fondamentale per la buona riuscita di un lavoro, permettendo di accertarsi che, per qualsiasi causa, l'impianto eseguito non presenti eventuali punti di perdita.

Le operazioni da compiere sono le seguenti:

- Ispezione a vista dei tubi e delle giunzioni: in tal modo si verifica che l'installazione dei tubi dei raccordi sia stata effettuata correttamente (a regola d'arte) e non vi siano parti accidentalmente danneggiate da corpi taglienti.
- **Prova idraulica di tenuta**: viene eseguita ad impianto ancora direttamente accessibile, riempiendo lo stesso con acqua a temperatura ambiente ed avendo cura di far fuoriuscire l'aria presente.
- 1. A riempimento effettuato ed a impianto chiuso, mettere lo stesso in pressione alla pressione di collaudo per 30 minuti (qualora si registri un abbassamento di pressione dovuto all'assestamento delle tubazioni, ripristinare la pressione ad intervali di 10 minuti).
- 2. Leggere il valore di pressione, utilizzando apparecchiature con precisione di 0,1 bar, dopo 30 minuti. leggere il valore di pressione dopo altri 30 minuti: se la variazione è inferiore a 0,6 bar l'impianto non presenta perdite. Continuare il

collaudo per altre 2 ore.

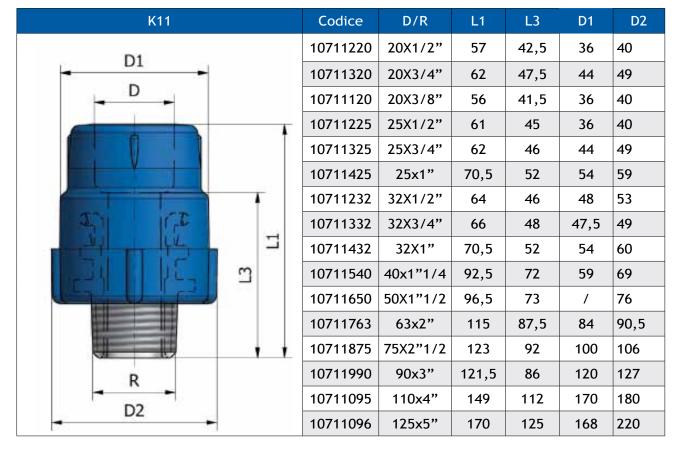
3. Leggere il valore di pressione dopo 2 ore, se la pressione diminuisce di oltre 0,2 bar nel sistema è presente una perdita, altrimenti il collaudo è positivo.

Per tratti di impianto è possibile omettere le operazioni di cui al punto 3.

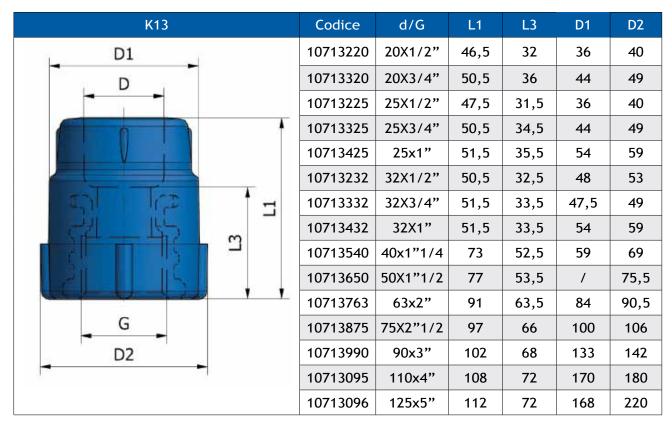
# PRESSIONE DI COLLAUDO = PRESSIONE MASSIMA DI ESERCIZIO x 1,5

Un uso appropriato del COPRAX e dei suoi raccordi, unitamente ad un attento collaudo, eviterà qualunque problema anche nei tratti o negli impianti destinati a convogliare acqua calda.

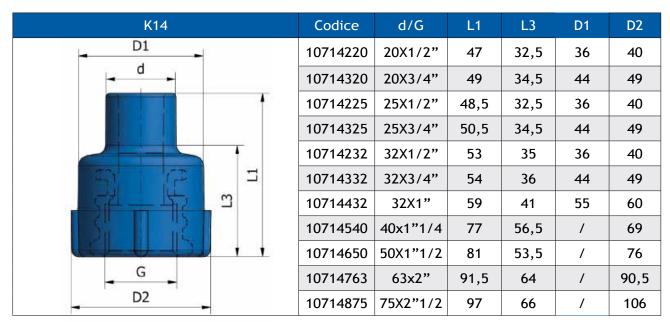
N.B. Completata l'operazione di collaudo, all'impianto viene tolta la pressione di prova; a volte sarà opportuno vuotare totalmente l'impianto, specialmente se lo stesso é realizzato in zone soggette a raggiungere temperature prossime o inferiori a 0°C.

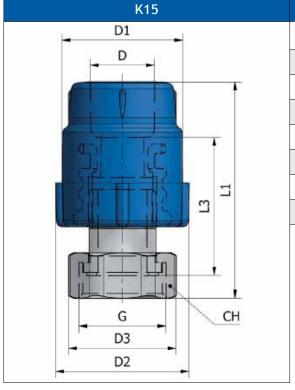

Tale avvertenza ha lo scopo di evitare eventuali rotture inaspettate e dovute a formazione di ghiaccio, su impianti che si presumono già collaudati e quindi esenti da qualunque inconveniente.





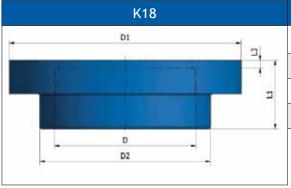




| K10      | Codice   | D   | L1   | L3  | D1    |
|----------|----------|-----|------|-----|-------|
| D1       | 10710020 | 20  | 33,5 | 4,5 | 32,5  |
| D        | 10710025 | 25  | 37,5 | 5,5 | 40,5  |
|          | 10710032 | 32  | 43   | 7   | 43,5  |
|          | 10710040 | 40  | 50   | 9   | 59    |
|          | 10710050 | 50  | 57   | 10  | 73,5  |
| <u> </u> | 10710063 | 63  | 64   | 9   | 84    |
|          | 10710075 | 75  | 66   | 4   | 100   |
|          | 10710090 | 90  | 79   | 8   | 120   |
|          | 10710095 | 110 | 89,5 | 5   | 145,5 |
|          | 10710096 | 125 | 91   | 10  | 163   |

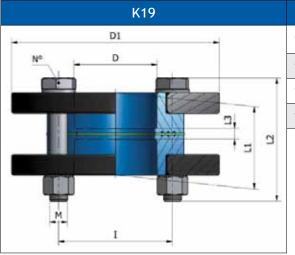



| K12          | Codice   | d/R      | L1    | L3   | D1 | D2   |
|--------------|----------|----------|-------|------|----|------|
| D1           | 10712220 | 20X1/2"  | 60,5  | 46   | 36 | 40   |
| d -          | 10712320 | 20X3/4"  | 63,5  | 49   | 44 | 49   |
|              | 10712225 | 25X1/2"  | 62    | 46   | 36 | 40   |
|              | 10712325 | 25X3/4"  | 65    | 49   | 44 | 49   |
|              | 10712425 | 25x1"    | 74    | 58   | 55 | 60   |
|              | 10712232 | 32X1/2"  | 66,5  | 48,5 | 36 | 40   |
| 2 2          | 10712332 | 32X3/4"  | 68,5  | 50,5 | 44 | 49   |
|              | 10712432 | 32X1"    | 76    | 58   | 55 | 60   |
|              | 10712540 | 40x1"1/4 | 96,5  | 76   | /  | 69   |
| <b>4</b> • • | 10712650 | 50X1"1/2 | 100,5 | 77   | /  | 76   |
| R            | 10712763 | 63x2"    | 115   | 87,5 | /  | 90,5 |
| D2           | 10712875 | 75X2"1/2 | 123   | 92   | /  | 106  |





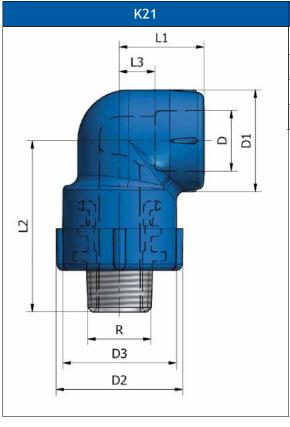


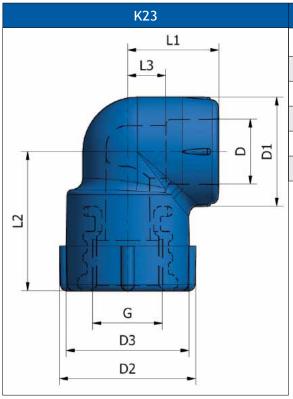

| Codice   | D/G      | L1   | L3   | D1 | D2   | D3   | СН |
|----------|----------|------|------|----|------|------|----|
| 10715220 | 20X1/2"  | 67,5 | 46,5 | 36 | 40   | 28   | 25 |
| 10715320 | 20X3/4"  | 67,5 | 46,5 | 36 | 40   | 33   | 30 |
| 10715325 | 25X3/4"  | 68,5 | 46   | 36 | 40   | 33   | 30 |
| 10715425 | 25x1"    | 75,5 | 51,5 | 44 | 49   | 40,5 | 37 |
| 10715532 | 32X1"1/4 | 85   | 47   | 54 | 59   | 51,5 | 47 |
| 10715640 | 40x1"1/2 | 105  | 75   | 59 | 69   | 55,5 | 52 |
| 10715750 | 50X2"    | 118  | 81   | /  | 75,5 | 74,5 | 64 |
| 10715863 | 63x2"1/2 | 143  | 102  | 84 | 90,5 | 85   | 80 |

|   | K17     | Codice   | D   | L1  | L2 | L3 | L4   | D1   | D2   |
|---|---------|----------|-----|-----|----|----|------|------|------|
|   | L4      | 10717020 | 20  | 70  | 34 | 3  | 51   | 33,5 | 18   |
|   | D2      | 10717025 | 25  | 71  | 36 | 4  | 52   | 38,5 | 16,5 |
| • | [ [ [ ] | 10717032 | 32  | 80  | 41 | 3  | 62   | 46,5 | 16,5 |
| 2 |         | 10717040 | 40  | 90  | 44 | 0  | 66   | 56   | 16,5 |
| _ |         | 10717050 | 50  | 100 | 50 | 0  | 75   | 68   | 17,5 |
| • | 0 10    | 10717063 | 63  | 107 | 59 | 0  | 80   | 86   | 17,5 |
|   |         | 10717075 | 75  | 121 | 65 | 0  | 92,5 | 103  | 17,5 |
|   |         | 10717090 | 90  | 130 | 75 | 0  | 102  | 122  | 17,5 |
|   | L3      | 10717095 | 110 | 142 | 85 | 0  | 108  | 146  | 17,5 |
|   | - L1    | 10717096 | 125 | 153 | 92 | 0  | 137  | 164  | 16   |

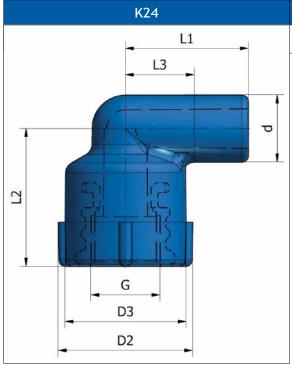



| Codice   | D   | L1 | L3 | D1    | D2    |
|----------|-----|----|----|-------|-------|
| 10718075 | 75  | 36 | 5  | 120   | 88,5  |
| 10718090 | 90  | 40 | 5  | 137,5 | 104,5 |
| 10718095 | 110 | 51 | 10 | 154   | 126   |
| 10718096 | 125 | 55 | 10 | 157   | 144   |




| Codice   | D   | L1  | L2  | L3 | D1  |
|----------|-----|-----|-----|----|-----|
| 10719075 | 75  | 74  | 110 | 12 | 186 |
| 10719090 | 90  | 82  | 110 | 12 | 200 |
| 10719095 | 110 | 105 | 130 | 23 | 218 |
| 10719096 | 125 | 113 | 130 | 23 | 218 |

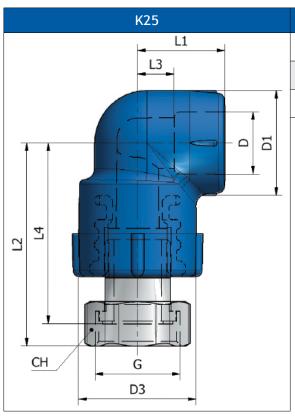



| K20    | Codice   | D   | L1   | L3   | D1   |
|--------|----------|-----|------|------|------|
| - L1 - | 10720020 | 20  | 27   | 12,5 | 30,5 |
| -L3    | 10720025 | 25  | 31,5 | 15,5 | 37,5 |
|        | 10720032 | 32  | 38,5 | 20,5 | 47,5 |
|        | 10720040 | 40  | 46   | 25,5 | 59   |
| 0 0    | 10720050 | 50  | 54   | 30,5 | 74   |
| [2]    | 10720063 | 63  | 63,5 | 36   | 84   |
| 5      | 10720075 | 75  | 71   | 40   | 100  |
|        | 10720090 | 90  | 81,5 | 46   | 120  |
| ,      | 10720095 | 110 | 96   | 56   | 146  |
|        | 10720096 | 125 | 109  | 64   | 170  |



| Codice   | D/R     | L1   | L2   | L3   | D1   | D2 | D3 |
|----------|---------|------|------|------|------|----|----|
| 10721120 | 20x3/8" | 27   | 52   | 12,5 | 32,5 | 40 | 36 |
| 10721220 | 20x1/2" | 27   | 55   | 12,5 | 32,5 | 40 | 36 |
| 10721325 | 25x3/4" | 32,5 | 59,5 | 16,5 | 41   | 49 | 44 |
| 10721432 | 32x1"   | 39,5 | 68   | 21,5 | 52,5 | 60 | 55 |




| Codice   | D/G     | L1   | L2 | L3   | D1   | D2 | D3 |
|----------|---------|------|----|------|------|----|----|
| 10723120 | 20x3/8" | 27   | 41 | 12,5 | 32,5 | 40 | 36 |
| 10723220 | 20x1/2" | 27   | 41 | 12,5 | 32,5 | 40 | 36 |
| 10723225 | 25x1/2" | 27   | 41 | 11   | 36,5 | 40 | 36 |
| 10723325 | 25x3/4" | 32,5 | 45 | 16,5 | 41   | 49 | 44 |
| 10723332 | 32x3/4" | 39,5 | 51 | 21,5 | 52,5 | 60 | 55 |
| 10723432 | 32x1"   | 39,5 | 51 | 21,5 | 52,5 | 60 | 55 |



| Codice   | D/G     | L1 | L2 | L3   | D2 | D3 |
|----------|---------|----|----|------|----|----|
| 10724220 | 20X1/2" | 37 | 41 | 22,5 | 36 | 40 |
|          |         |    |    |      |    |    |







| Codice   | D/G      | L1   | L2 | L3   | L4   | D1   | D3 | СН |
|----------|----------|------|----|------|------|------|----|----|
| 10725320 | 20x3/4"  | 27   | 62 | 12,5 | 55,5 | 32,5 | 36 | 30 |
| 10725425 | 25x1"    | 32,5 | 66 | 16,5 | 59,5 | 41   | 44 | 37 |
| 10725532 | 32x1"1/4 | 39,5 | 79 | 21,5 | 69,5 | 52,5 | 55 | 47 |



| Codice   | D/d   | L1   | L2   | L3   | L4   | D1   |
|----------|-------|------|------|------|------|------|
| 10726020 | 20x20 | 33,5 | 26,5 | 19   | 12   | 32,5 |
| 10726025 | 25x25 | 39,5 | 31,5 | 23,5 | 15,5 | 37,5 |

|    | K28      |   |
|----|----------|---|
|    | L1<br>L3 |   |
| 1  | 0 0      |   |
| 13 |          | 5 |
| ,  |          |   |

| Codice   | D  | L1 | L3   | D1 |
|----------|----|----|------|----|
| 10728020 | 20 | 57 | 42,5 | 30 |

| K29 | Codice   |
|-----|----------|
|     | 10729020 |
| u u |          |
|     |          |
| ā   |          |
| 3 8 |          |
|     |          |
|     |          |

|               | J        |     |      |      |      |
|---------------|----------|-----|------|------|------|
| K30           | Codice   | D   | L1   | L3   | D1   |
|               | 10730020 | 20  | 27   | 12,5 | 30,5 |
| и и           | 10730025 | 25  | 31,5 | 15,5 | 37,5 |
| L3 L3         | 10730032 | 32  | 38   | 20   | 43,5 |
|               | 10730040 | 40  | 47,5 | 27   | 54   |
|               | 10730050 | 50  | 54,5 | 31   | 67   |
| ָם <u>.</u> . | 10730063 | 63  | 63,5 | 36   | 84   |
| 5             | 10730075 | 75  | 73   | 40   | 100  |
|               | 10730090 | 90  | 81,5 | 46   | 120  |
|               | 10730095 | 110 | 96   | 56   | 146  |
|               | 10730096 | 125 | 122  | 82   | 170  |

D

20

L1

70,5

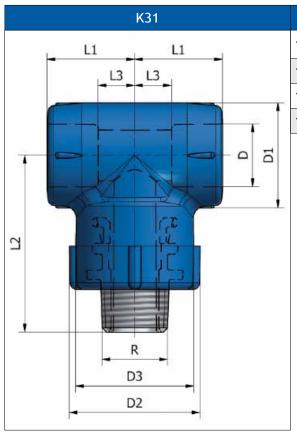
L2

17

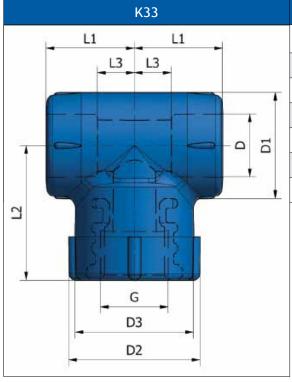
L3

56

D1


22

D2


33







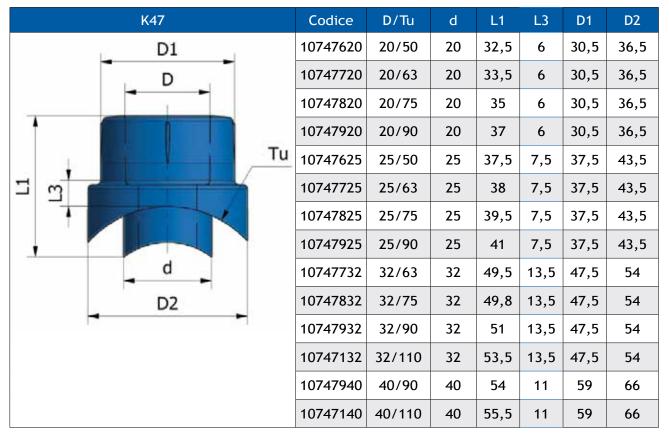
| Codice   | D/R     | L1   | L2   | L3   | D1   | D2 | D3 |
|----------|---------|------|------|------|------|----|----|
| 10731120 | 20x3/8" | 27   | 52   | 12,5 | 32,5 | 40 | 36 |
| 10731220 | 20x1/2" | 27   | 55   | 12,5 | 32,5 | 40 | 36 |
| 10731325 | 25x3/4" | 32,5 | 59,5 | 16,5 | 41   | 49 | 44 |
| 10731432 | 32x1"   | 39,5 | 68   | 21,5 | 52,5 | 60 | 55 |



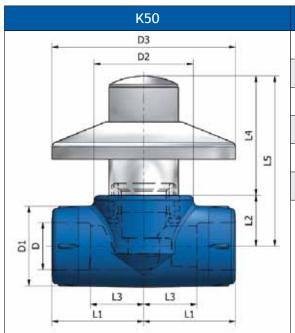

| Codice   | D/G     | L1   | L2 | L3   | D1   | D2 | D3 |
|----------|---------|------|----|------|------|----|----|
| 10733120 | 20x3/8" | 27   | 41 | 12,5 | 32,5 | 40 | 36 |
| 10733220 | 20x1/2" | 27   | 41 | 12,5 | 32,5 | 40 | 36 |
| 10733225 | 25x1/2" | 27   | 41 | 11   | 36,5 | 40 | 36 |
| 10733325 | 25x3/4" | 32,5 | 45 | 16,5 | 41   | 49 | 44 |
| 10733232 | 32x1/2" | 34,5 | 47 | 16,5 | 47,5 | 40 | 36 |
| 10733332 | 32x3/4" | 39,5 | 51 | 21,5 | 52,5 | 60 | 55 |
| 10733432 | 32x1"   | 39,5 | 51 | 21,5 | 52,5 | 60 | 55 |

| K35                                     | Codice   | D/Da    | L1   | L2   | L3   | L4   | D1   | D2   |
|-----------------------------------------|----------|---------|------|------|------|------|------|------|
| Li Li                                   | 10735225 | 25x20   | 29,5 | 29,5 | 13,5 | 15   | 37,5 | 30,5 |
| L3 L3                                   | 10735232 | 32x20   | 38   | 33   | 20   | 18   | 43,5 | 29   |
|                                         | 10735332 | 32x25   | 38   | 35   | 20   | 19   | 43,5 | 34   |
| , , , , , , , , , , , , , , , , , , , , | 10735240 | 40x20   | 47,5 | 39,5 | 27   | 25   | 54   | 28   |
|                                         | 10735340 | 40x25   | 47,5 | 41,5 | 27   | 25,5 | 54   | 33,5 |
| 4                                       | 10735440 | 40x32   | 47,5 | 45   | 27   | 27   | 54   | 43   |
| 2                                       | 10735250 | 50x20   | 54,5 | 45   | 31   | 30,5 | 67   | 28   |
|                                         | 10735350 | 50x25   | 54,5 | 47   | 31   | 31   | 67   | 33,5 |
| Da                                      | 10735450 | 50x32   | 54,5 | 51   | 31   | 33   | 67   | 43   |
| D2                                      | 10735550 | 50x40   | 54,5 | 52   | 31   | 31,5 | 67   | 54   |
| , , , , , , , , , , , , , , , , , , ,   | 10735363 | 63x25   | 63,5 | 55   | 36   | 39   | 84   | 33,5 |
|                                         | 10735463 | 63x32   | 63,5 | 57   | 36   | 39   | 84   | 43   |
|                                         | 10735563 | 63x40   | 63,5 | 58   | 36   | 37,5 | 84   | 54   |
|                                         | 10735663 | 63x50   | 63,5 | 60   | 36   | 36,5 | 84   | 67   |
|                                         | 10735475 | 75x32   | 71   | 63   | 40   | 45   | 100  | 43   |
|                                         | 10735575 | 75x40   | 71   | 64   | 40   | 43,5 | 100  | 54   |
|                                         | 10735675 | 75x50   | 71   | 66   | 40   | 42,5 | 100  | 67   |
|                                         | 10735775 | 75x63   | 71   | 68   | 40   | 40,5 | 100  | 85   |
|                                         | 10735790 | 90x63   | 83   | 83   | 47,5 | 55,5 | 120  | 85   |
|                                         | 10735890 | 90x75   | 83   | 83   | 47,5 | 52   | 120  | 100  |
|                                         | 10735895 | 110x75  | 99   | 99   | 59   | 68   | 148  | 100  |
|                                         | 10735995 | 110x90  | 99   | 99   | 59   | 63,5 | 148  | 120  |
|                                         | 10735896 | 125x75  | 122  | 104  | 82   | 73   | 165  | 100  |
|                                         | 10735996 | 125x90  | 122  | 104  | 82   | 71   | 165  | 120  |
|                                         | 10735096 | 125x110 | 122  | 108  | 82   | 44   | 165  | 148  |






| K36 | Codice   | D/Da/Db  | L1   | L2   | L3   | L4 | L5   | L6   | D1   | D2   |
|-----|----------|----------|------|------|------|----|------|------|------|------|
|     | 10736320 | 25x20x20 | 33,5 | 33,5 | 33,5 | 19 | 17,5 | 19   | 33,5 | 33,5 |
|     | 10736225 | 25x25x20 | 33,5 | 33,5 | 33,5 | 19 | 17,5 | 17,5 | 33,5 | 33,5 |



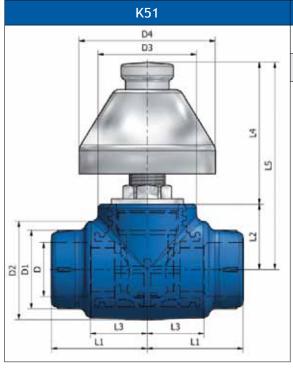

| K40 | Codice   | D/Da  | L1   | L3   | D1   | D2   |
|-----|----------|-------|------|------|------|------|
| D1  | 10740225 | 25x20 | 35,5 | 5    | 30,5 | 37,5 |
| Da  | 10740232 | 32x20 | 37,5 | 5    | 31   | 47,5 |
| -   | 10740332 | 32x25 | 40   | 6    | 37,5 | 47,5 |
| 4   | 10740240 | 40x20 | 43   | 8    | 30,5 | 59   |
| m   | 10740340 | 40x25 | 45   | 8,5  | 37,5 | 59   |
| 2   | 10740440 | 40x32 | 47   | 8,5  | 47,5 | 59   |
|     | 10740250 | 50x20 | 46   | 8    | 30,5 | 74   |
|     | 10740350 | 50x25 | 48   | 8,5  | 37,5 | 74   |
|     | 10740450 | 50x32 | 50   | 8,5  | 47,5 | 74   |
|     | 10740550 | 50x40 | 54   | 10   | 59   | 74   |
| D   | 10740363 | 63x25 | 54   | 10,5 | 33,5 | 84   |
| D2  | 10740463 | 63x32 | 59   | 13,5 | 43   | 84   |
| -   | 10740563 | 63x40 | 60   | 12   | 54   | 84   |
|     | 10740663 | 63x50 | 62   | 11   | 67   | 84   |
|     | 10740475 | 75x32 | 60   | 11   | 43   | 100  |
|     | 10740575 | 75x40 | 61   | 9,5  | 54   | 100  |
|     | 10740675 | 75x50 | 63   | 8,5  | 67   | 100  |
|     | 10740775 | 75x63 | 65   | 6,5  | 84   | 100  |


| K41      | Codice   | d/D    | L1   | L3   | D1   |
|----------|----------|--------|------|------|------|
| d        | 10741320 | 25x20  | 37,5 | 7    | 30,5 |
|          | 10741420 | 32x20  | 35,5 | 3    | 32   |
|          | 10741425 | 32x25  | 39,5 | 5,5  | 38,5 |
| <u> </u> | 10741963 | 90x63  | 86,5 | 23,5 | 84   |
| -        | 10741975 | 90x75  | 94,5 | 28   | 100  |
|          | 10741063 | 110x63 | 85   | 24   | 110  |
|          | 10741075 | 110x75 | 89   | 27   | 110  |
|          | 10741090 | 110x90 | 92   | 17   | 119  |
| D D1     |          |        |      |      |      |








| Codice   | D    | L1   | L2   | L3 | L4 | L5    | D1   | D2 | D3 |
|----------|------|------|------|----|----|-------|------|----|----|
| 10750020 | 20   | 37,5 | 20,5 | 21 | 50 | 70,5  | 33,5 | 41 | 76 |
| 10750120 | 20 L | 37,5 | 20,5 | 21 | 80 | 100,5 | 33,5 | 41 | 76 |
| 10750025 | 25   | 46   | 33   | 30 | 50 | 81    | 36,5 | 47 | 76 |
| 10750125 | 25 L | 46   | 33   | 30 | 80 | 111   | 36,5 | 47 | 76 |
| 10750032 | 32   | 46   | 33   | 28 | 50 | 81    | 49   | 49 | 76 |
| 10750132 | 32 L | 46   | 33   | 28 | 80 | 111   | 49   | 49 | 76 |



| Codice   | D/G     | L1   | L2   | L3 | D1   | D2 |
|----------|---------|------|------|----|------|----|
| 10750920 | 20X1/2" | 37,5 | 25,5 | 21 | 33,5 | 41 |
| 10750925 | 25X3/4" | 46   | 33   | 30 | 36,5 | 47 |
| 10750932 | 32X3/4" | 46   | 33   | 28 | 49   | 49 |

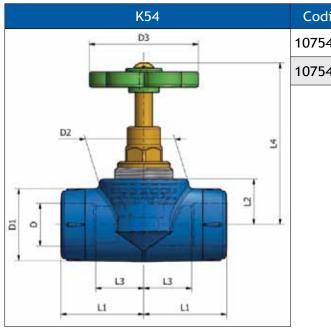


| Codice   | D    | L1   | L2   | L3 | L4 | L5   | D1   | D2 | D3 |
|----------|------|------|------|----|----|------|------|----|----|
| 10750320 | 20 L | 37,5 | 20,5 | 21 | 70 | 90,5 | 33,5 | 41 | 76 |
| 10750325 | 25 L | 46   | 33   | 30 | 70 | 101  | 36,5 | 47 | 76 |
| 10750332 | 32 L | 46   | 33   | 28 | 70 | 101  | 49   | 49 | 76 |



| Codice   | D  | L1   | L2   | L3   | L4 | L5   | D1   | D2 | D3   |
|----------|----|------|------|------|----|------|------|----|------|
| 10751020 | 20 | 43,5 | 29,5 | 29   | 65 | 94,5 | 35,5 | 45 | 62,5 |
| 10751025 | 25 | 43,5 | 29,5 | 27,5 | 65 | 94,5 | 35,5 | 45 | 62,5 |






D3

D2

| K51 CORPO | Codice   | D  | L1   | L2   | L3   | D1   |
|-----------|----------|----|------|------|------|------|
| D3        | 10751820 | 20 | 43,5 | 29,5 | 29   | 35,5 |
| 1         | 10751825 | 25 | 43,5 | 29,5 | 27,5 | 35,5 |
| 2000      |          |    |      |      |      |      |
|           |          |    |      |      |      |      |

| K53   | Codice   | D  | L1   | L2  | L3   | L4  | D1   |
|-------|----------|----|------|-----|------|-----|------|
| L4    | 10753020 | 20 | 33,5 | 60  | 19   | 102 | 45,5 |
|       | 10753025 | 25 | 35,5 | 60  | 19,5 | 102 | 50   |
| 2     | 10753032 | 32 | 40   | 63  | 22   | 102 | 57   |
|       | 10753040 | 40 | 47   | 78  | 26,5 | 120 | 72,5 |
| . 50  | 10753050 | 50 | 55   | 83  | 30,5 | 120 | 84,5 |
|       | 10753063 | 63 | 65   | 103 | 36,5 | 146 | 102  |
| u u   | 10753075 | 75 | 75   | 110 | 43,5 | 150 | 124  |
| u i i |          |    |      |     |      |     |      |



L3

| Codice   | D  | L1   | L2   | L3 | L4    | D1   | D2 | D3 |
|----------|----|------|------|----|-------|------|----|----|
| 10754020 | 20 | 37,5 | 20,5 | 21 | 66-73 | 33,5 | 41 | 50 |
| 10754025 | 25 | 46   | 33   | 30 | 70-76 | 36,5 | 47 | 50 |

|          | K60                                   | Codice   | D   | L1   | L3   | D1   |
|----------|---------------------------------------|----------|-----|------|------|------|
|          | KOO                                   | 10760020 | 20  | 22,5 | 8    | 28,5 |
| A A      |                                       |          |     |      |      |      |
|          |                                       | 10760025 | 25  | 28,5 | 12,5 | 35,5 |
|          |                                       | 10760032 | 32  | 36,5 | 18,5 | 46   |
| _        |                                       | 10760040 | 40  | 35   | 14,5 | 59   |
|          |                                       | 10760050 | 50  | 40   | 16,5 | 74   |
| -        |                                       | 10760063 | 63  | 45,5 | 18   | 84   |
|          | D                                     | 10760075 | 75  | 49   | 18   | 100  |
|          | <b>→</b>                              | 10760090 | 90  | 57   | 21,5 | 120  |
|          | D1                                    | 10760095 | 110 | 79   | 39   | 148  |
|          | <b>→</b>                              | 10760096 | 125 | 87   | 45   | 165  |
|          | K70                                   | Codice   | D   | L1   | L3   | D1   |
| <u> </u> | <i>A</i>                              | 10770020 | 20  | 21,5 | 7    | 32,5 |
| \$       |                                       | 10770025 | 25  | 25   | 9    | 37,5 |
| × 3×     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 10770032 | 32  | 28,5 | 10,5 | 47,5 |
| X\       | 10770040                              | 40       | 36  | 15,5 | 54   |      |
|          | Y /                                   | 10770050 | 50  | 40   | 16,5 | 67   |
|          |                                       |          |     | 45   | 17,5 | 84   |
| 1 2      |                                       | 10770075 | 75  | 49   | 18   | 100  |

57,5



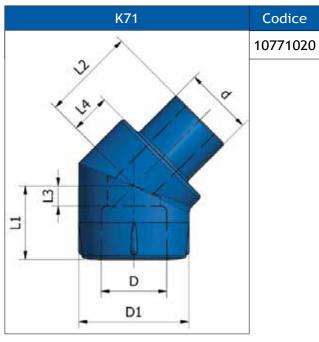
L2

27,5

L1

21,5

L3


7

L4

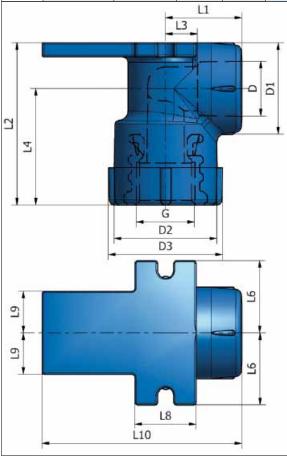
13

D1

32,5



D2


| D D1 |          |         |    |      |      |      |      |
|------|----------|---------|----|------|------|------|------|
| K48  | Codice   | G/Tu    | d  | L1   | L3   | D1   | D2   |
| D1   | 10748250 | 1/2"/50 | 25 | 37,5 | 23,5 | 37,5 | 43,5 |
| - G  | 10748263 | 1/2"/63 | 25 | 38   | 23,5 | 37,5 | 43,5 |
|      | 10748275 | 1/2"/75 | 25 | 39,5 | 23,5 | 37,5 | 43,5 |
| m Tu | 10748290 | 1/2"/90 | 25 | 41   | 23,5 | 37,5 | 43,5 |
|      | 10748350 | 3/4"/50 | 25 | 45,5 | 31,5 | 47,5 | 54   |
|      | 10748363 | 3/4"/63 | 32 | 49,5 | 31,5 | 47,5 | 54   |
|      | 10748375 | 3/4"/75 | 32 | 49,8 | 31,5 | 47,5 | 54   |
| d    | 10748390 | 3/4"/90 | 32 | 51   | 31,5 | 47,5 | 54   |

Codice

D/d

20x20

| K83 | Codice   | D/G     | L1 | L2   | L3   | L4   | L5   | L6   | L7 | L8   | L9 | L10  | D1   | D2 | D3 |
|-----|----------|---------|----|------|------|------|------|------|----|------|----|------|------|----|----|
|     | 10783120 | 20x3/8" | 27 | 46,5 | 12,5 | 31,5 | 15   | 25,5 | 15 | 23,5 | 15 | 56,5 | 30,5 | 36 | 40 |
|     | 10783220 | 20x1/2" | 27 | 57,5 | 12,5 | 41   | 16,5 | 25,5 | 15 | 23,5 | 15 | 56,5 | 30,5 | 36 | 40 |





L1

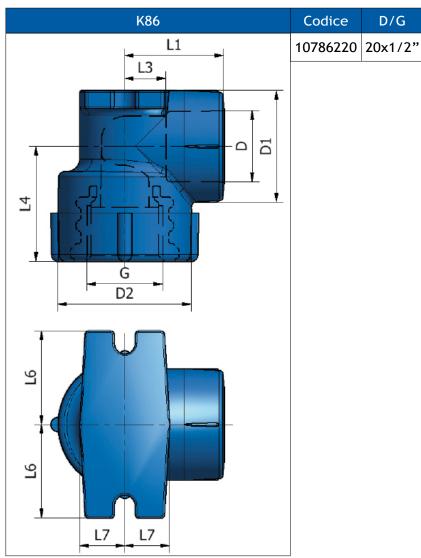
L3

L4 L6

27 | 12,5 | 41 | 26 | 21,5 | 32,5 | 36



D1


D2

| K84   |  |
|-------|--|
| DZ DZ |  |
| ELG.  |  |

| K84        | Codice   | D/G     |
|------------|----------|---------|
| PJ G D2 II | 10784220 | 20x1/2" |
| 87 L6      |          |         |

|      | K        | 85       |      |
|------|----------|----------|------|
|      | L2 (max) | £2 (max) | 1    |
|      | LI (min) | L1 (min) |      |
|      | 0        | 2        |      |
| . 15 | L4       | L4       | . 15 |
| 9    |          |          |      |
|      |          | 5        |      |
|      |          |          |      |

| Codice   | D/G     | L1 | L2 | L3 | L4  | L5 | L6 | L7   |
|----------|---------|----|----|----|-----|----|----|------|
| 10750020 | 20x1/2" | 10 | 90 | 53 | 115 | 50 | 40 | 60,5 |



L3

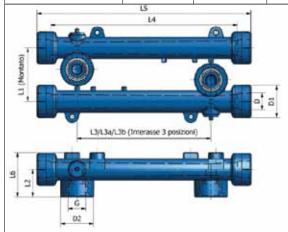
L4

L6

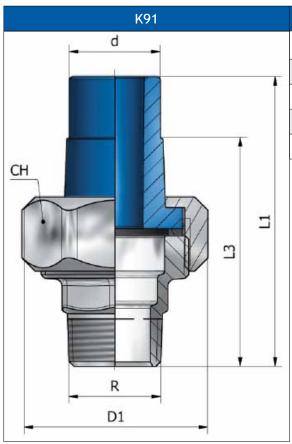
27 | 12,5 | 31,5 | 25,5 | 12 | 30,5 | 36

L7 D1

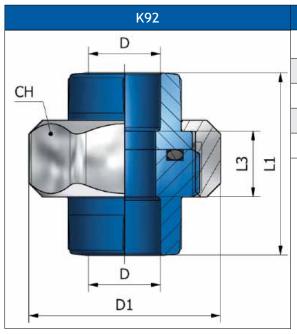
D2


Codice

D/G


L1

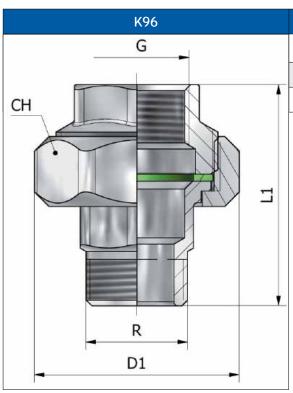



| K87 | Codice   | D/G     | L1 | L2 | L3  | L3a | L3b | L4  | L5  | L6   | D1   | D2   |
|-----|----------|---------|----|----|-----|-----|-----|-----|-----|------|------|------|
|     | 10787220 | 20x1/2" | 52 | 32 | 155 | 135 | 100 | 219 | 248 | 51,5 | 37,5 | 38,5 |

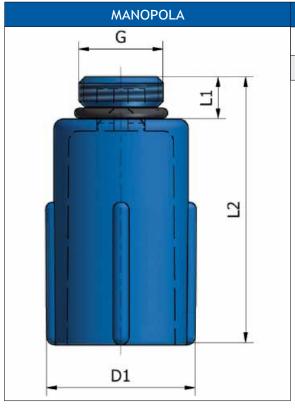


| К90      | Codice   | D  | L1  | L2 |
|----------|----------|----|-----|----|
|          | 10790020 | 20 | 200 | 30 |
| 2, u u t | 10790025 | 25 | 200 | 35 |
| -        | 10790032 | 32 | 200 | 42 |




| Codice   | d/R      | L1  | L3    | D1 | СН |
|----------|----------|-----|-------|----|----|
| 10791325 | 25x3/4"  | 81  | 65    | 53 | 47 |
| 10791432 | 32x1"    | 89  | 71    | 56 | 52 |
| 10791540 | 40x1"1/4 | 107 | 86,5  | 64 | 60 |
| 10791650 | 50x1"1/2 | 118 | 94,5  | 76 | 72 |
| 10791763 | 63x2"    | 132 | 104,5 | 94 | 88 |




| Codice   | D  | L1   | L3   | D1 | СН |
|----------|----|------|------|----|----|
| 10792020 | 20 | 49   | 20   | 53 | 47 |
| 10792025 | 25 | 54,5 | 22,5 | 56 | 52 |
| 10792032 | 32 | 62,5 | 26,5 | 64 | 60 |
| 10792040 | 40 | 71   | 30   | 76 | 72 |
| 10792050 | 50 | 77,5 | 30,5 | 94 | 88 |







| Codice   | D         | L1 | L3 | D1 |
|----------|-----------|----|----|----|
| 10796220 | 1/2"x1/2" | 52 | 41 | 37 |
| 10796325 | 3/4"x3/4" | 57 | 53 | 47 |
| 10796432 | 1"x1"     | 60 | 56 | 52 |



| Codice   | G    | L1   | L2 | D1 |
|----------|------|------|----|----|
| 10799987 | 1/2" | 10,5 | 66 | 37 |
| 10799988 | 3/4" | 13   | 72 | 42 |











Prandelli S.p.A.
Via Rango, 58 LUMEZZANE (BS) Italia
Tel. +39 030 892 0922
Fax. +39 030 892 1739

www.prandelli.com

e-mail: prandelli@prandelli.com